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Abstract – 

This paper tests neural network-based transcription metrics including ‘Word Error Rate, Character Error Rate, 

Sentence Error Rate, Word Accuracy, F1-Score and Overall Score’. Panopto’s platform specific automatic speech 

recognition Deepspeech 0.9.2 will be tested and compared to Open AI Whisper, as well as a fine-tuned variant 

of the models used by Open AI called LMT2, a purpose-built model that has been further developed on datasets 

of speech. An internal test of 20,000 audio files will be carried out for all models and variants, with the best 

preforming variants of the LMT2 model being set as the foundation for an online test, where participants will be 

exposed to an audio file of speech originally from Panopto’s platform, where the participants will select one of 3 

transcriptions that is best correlated to the audio provided. Comparing the results of the models internal and 

online test with statistical analysis techniques. 
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1.0 Introduction 

With the advancements of machine learning platforms with respect to speech, the underpinning question if such 

technologies can be adapted and shaped to preform a purpose better than what is currently available. In the 

case of this paper, the rationale comes from an international student at the University of Derby campus that was 

studying as an international student, with a basic understanding of the English language. During the global 

pandemic of Covid-19, many students worked from home and relied heavily on the services provided by the 

website ‘Panopto’ for media sharing of the lectures and seminars. The Panopto video platform automatically 

transcribes the speech in the videos using a technology called Automatic Speech Recognition, a lightly accurate 

speech to text technology that has been used by the platform for over 5 years Panopto. (2022). The lack of 

accuracy in this technology has caused situations where non-native international English speakers are given 

either conflicting transcriptions of the lectures or seminars, or transcriptions that do not conform to any context 

to what was said in the recordings. The use of Open AI’s Whisper neural network model can be used to improve 

on these factors. The following paper outlines such issues and provides a detailed analysis of both tuning a model 

for the use on the Panopto platform, as well as the implications of the Panopto automatic speech recognition 

system on a test set of data. Concluding with the overall results of the findings.  
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2.0 | 2.1 Literature Review - History of Automatic Speech Recognition (ASR) 

The history of Automatic Speech Recognition (ASR) can be traced back to the advent of key technologies 

throughout the late 1800’s and 1900’s, where the inception and creation of Alexander Graham Bell’s telephone 

on the 7th of March 1876, sparked a new era of verbal communication. This key technology was able to transmit 

speech from one person to another via transmission through conductive cable spanning many miles. The first 

communication of the telephone by Alexander Graham Bell, was made on the 10th of March 1876 to his assistant 

Thomas Watson, from the Bells Laboratory in Boston Massachusetts to Thomas Watsons workshop in the same 

building. Where Alexander Graham Bell’s first communication was “Mr. Watson, come here, I want to see you.” 

Thomas Watson recalled that he was able to hear Mr. Bell through the device clearly. And so, this became the 

origin of speech telecommunications. Bell labs then went on to show the world the telephone in 1876 at the 

Centennial Exposition in Philadelphia. Science and Technology (2020) 

 

Figure 1 – (Left) Technical Drawings of the telephone from Bell Labs. Science and Technology (2020) (Right) 

Alexander Graham Bell speaking through the telephone.  History.com Editors (2009).  

The telephone itself in simple terms worked by utilising acoustic coupling. The term states that the sound energy 

from one person’s speech, is transferred to a medium that induces electrical resistance so that it be sent through 

a transmission line to the recipient, where the signal itself would then be transferred back to acoustical sound, 

allowing the recipient to hear what was said from the other side. This technology was possible with the invention 

of the carbon microphone. The carbon microphone worked by having sound pressure vibrate a diaphragm 

connected mechanically to a thin layer of carbon powder, the vibration of the diaphragm would change the 

resistive properties of the carbon as electricity was passed through it, this change in resistance was used to 

capture the speech of whoever was speaking into it. This breakthrough in telecommunications sparked countless 

technologies that have helped communication both domestically and internationally, not only through the power 

of sending speech to other areas of the world, but also through the medium of machines, and how they interact 

with us. The following points made within this section will outline the history of speech to text, and its 

technological advancements from basic machines understanding voltages from speech to complex machines, 

that can mimic the intricacies of the human brain. History.com Editors (2009) 

2.1.1 IBM Shoebox Speech Recognition 1961 

The IBM Shoebox was first introduced by William C. Dersch in 1961, the name ‘Shoebox’ came from the machine 

itself being roughly the same size as a general shoebox at the time. IBM (2003). The device was classified as a 

speech recognition machine, that was able to understand up to 16 spoken words, that included numbers 0 to 9, 

along with various arithmetic operations such as addition and subtraction. Ibm.com (2012). The machine was 

then connected to an adding machine, a machine that housed a mechanical calculator and a typewriter device 

inside, that was able to do calculations while printing onto paper, this device was like the advent of store cash 

registers, where the inputs from a clerk would be calculated and displayed onto paper for the customer to see. 

To use the device, the user would speak into a carbon microphone using the array of pre-built commands such 

as 0 to 9 and basic arithmetic, the speech itself would be converted into an electrical signal impulse and sent 
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through to a measuring circuit. The circuit itself would measure and classify the signal impulse coming from the 

carbon microphone according to their frequency and amplitude.  

 

 

 

 

 

 

 

Figure 2 – (Left) William C. Dersch presenting the ‘Shoebox’ IBM (2003). (Right) Closer look at the ‘Shoebox’ and 

its internal workings Ibm.com. (2012). 

This was done by having an array of 16 specific filters that would replicate the nuances of the frequency and 

amplitude of the input signal impulse, the filter with the highest voltage would then be sent to some internal 

physical relay logic, where it would send specific commands to the adding machine, based on the input itself. 

Ibm.com (2012). The machine itself was not capable of classifying more than the pre-determined voice 

commands, so any speech outside of the range of the device would not work as intended. This technology was 

defined as pattern matching, a simple yet effective way to classify data by measuring the input to an array of 

preexisting data. Put in simple terms, the device worked in a similar way to a common children’s toy, where you 

place shapes into precut holes, the device works in a similar way, where you are comparing the shape of the 

object to the holes, only specific shapes can fit and therefore pass through the hole, but like most thing this 

comes with its own challenges, in a similar way you can sometimes place such shapes in holes that were not 

intended as the tolerance of the holes on the toy are low, you can end up with a situation where some shapes 

are wrongly placed through the wrong holes. The device itself had such limitations, where even the slightest 

background noise was able to change the desired output of the machine.  

Despite its obvious limitations, the IBM Shoebox was a breakthrough in this field of electronics and its bridge to 

mechanical uses. The Shoebox proved that a machine could be capable of understanding the differences 

between specific words of speech and not only register the variances, but also act upon them. This research from 

IBM and William C. Dersch in 1961 inspired a new age of machines that could understand not only human voice 

but the nature of the human brain itself.  

2.1.2 Dynamic Time Warping (DTW) – 1970 

The Dynamic Time Warping algorithm was created by Taras Klymovych Vinsiuk a soviet researcher, in his 

publication “Speech Discrimination by Dynamic Programming” published under the Kibernetika, volume 4 1968, 

being Taras first publication. This algorithm was primarily used to determine the similarities of signals, similar to 

the use of the ‘IBM Shoebox’, where the principle of the technology was to use a comparison between input 

data, and reference data, although the Dynamic Time Warping algorithm itself can both align two temporal 

signals in the time domain and determine the similarities between the signals by comparing the ‘cost’ of aligning 

the two signals together. The term ‘cost’ is a phrase that outlines one of the algorithms outputs, determined by 

the last data point in its dataset. The algorithm can be used to classify the similarities between two sets of data 

or signal. In simple terms the algorithm uses a non-normalised float value to determine the similarity of the data 

you are trying to test. It gets this float value from calculating the ‘cost-index’ from a table of data, derived from 

two datasets. This algorithm can be used for speech recognition accuracy by allowing two signals to be aligned 

with respect to the levels of the input signal, to its reference signal. Simmilar to how the filter banks worked in 

the ‘IBM Shoebox’, the ability to compare an input signal to a reference signal, allows the algorithm to classify 

an alignment ‘cost’ this is the non-normalised float value mentioned in the previous statement. The algorithm 

itself can be simplified into its fundamental blocks shown below.   
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Figure 3 – DTW Algorithm Mathematical Expression 

This algorithm can be reclassified and simplified in the following algorithm. Signal 1 = 𝑥1:𝑁  (Input signal you want 

to align.) Signal 2 = 𝑦1:𝑁 (Reference signal you want 𝑥 to be aligned to.) Cost Matrix = 𝑫 ∈ ℝ𝑁+1 ×𝑀+1 (ℝ = Real 

Numbers for 𝑥1:𝑁 𝑎𝑛𝑑 𝑦1:𝑁). Where 𝑫 is the cost matrix, and the dimensionality of 𝑫 is derived from the set of 

real numbers in the cost matrix of ℝ𝑁+1 ×𝑀+1. Initialisation of matrix and primary inputs. 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁 ∶  𝐷𝑖,0 =

 ∞, 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑀 ∶  𝐷0,𝑗 =  ∞ Where 𝐷0,0 = 0 This denotes that all 𝐷𝑖,0 and 𝐷0,𝑗 prepopulate from 0 to the N 

set to infinity.  Now the cost matrix has been created and initialised with the correct inputs, the process of 

calculating the data that goes inside the matrix. for 𝑖 is referenced at each 𝑖: 𝑁 point, so the values of Signal 1 

will be represented at each 𝑖: 𝑁 point from 0. This carries over to Signal 2, where its 𝑗: 𝑁 points are taken from 

the signals data starting from 0.  𝑥1:𝑁 = 𝑖𝑁 𝑎𝑛𝑑 𝑦1:𝑁 = 𝑗𝑁  

Calculate the cost matrix data: 

 𝑓𝑜𝑟 𝑖 = 1 𝑡𝑜 𝑁: 
 𝑓𝑜𝑟 𝑗 = 1 𝑡𝑜 𝑀: 

𝐷𝑖,𝑗 = 𝑑(𝑥𝑖 , 𝑦𝑗) + 𝑚𝑖𝑛 {

𝐷𝑖 − 1 , 𝑗 − 1 (𝑚𝑎𝑡𝑐ℎ)
𝐷𝑖 − 1, 𝑗    (𝑖𝑛𝑠𝑒𝑟𝑡𝑖𝑜𝑛)

𝐷𝑖,𝑗 − 1       (𝑑𝑒𝑙𝑒𝑡𝑖𝑜𝑛)
 

𝑑(𝑥𝑖 , 𝑦𝑗) =  |𝑥𝑖 − 𝑦𝑗| 

 

(1) 

Get Alignment: Traceback from 𝐷𝑁,𝑀 to 𝐷0,0, 𝑥1 = [0, 2, 0, 1, 0, 0] and 𝑦1 = [0, 0, 0.5, 2, 0, 1, 0] So 𝑥1:𝑁 =

𝑖1:6  𝑎𝑛𝑑 𝑦1:𝑁 = 𝑗1:7 , Alignment Cost (float) is the value at the 𝐷𝑁,𝑀 datapoint. 

 

Figure 4 – Cost Matrix filled out with x and y data points. 
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Using the example shown in Figure 4, the 𝑥1and 𝑦1 datapoints have been calculated for each column and row of 

the matrix. To calculate the time alignment, the calculation starting from 𝐷𝑁,𝑀 must be made. Starting at this 

datapoint, a traceback must be made to the min value to the opposing blocks leading down to 𝐷0,0, this will give 

a clear line that can be traced from 𝐷𝑁,𝑀 to 𝐷0,0. When the traceback moves through the cost matrix, the data 

at the point of the traceback will be the alignment needed for that data So 𝑥1:𝑁 = 𝑖1:6  𝑎𝑛𝑑 𝑦1:𝑁 = 𝑗1:7 . This 

means that with the example in Figure 4, the cost index alignment is 0.5 at 𝐷𝑁,𝑀. 

Euclidean distance can be used to measure the distance between any two points in n-space and can be derived 

from the following equation. 

 
𝑑(𝒑, 𝒒) =  √∑(𝑞𝑖 − 𝑝𝑖)

2

𝑛

𝑖=0

 

 

(2) 

 𝒑, 𝒒  = Two points in Euclidean n-space. 

 𝑞𝑖 , 𝑝𝑖  = Euclidean vectors, starting from the origin of the space (Initial Point). 

 𝑛 = n-space. 

The term ‘n-space’ is derived from the mathematical principles of geometric space with 𝑛 dimensions.  

 

 

 

 

 

 

 

 

 

 

Figure 5 – Euclidean Distance of two signals and corresponding cost matrix (Top Left and Right) Non-Euclidean 

distanced signals with corresponding cost matrix (Bottom Left and Right) Furlanello, C (2006). 

Although not specifically noted in the algorithm of the Dynamic Time Warping algorithm, the principles in place 

that allow the DTW algorithm to measure the distance between data points, and correlate the output of the cost 

matrix, can also use the same mathematical principles of the Euclidean Distance equation to give a metric to the 

amount of alignment needed for two points. As the principles of the DTW find the closest alignment needed for 

two datasets. Because the DTW method provides a single float value for the cost index alignment, derived from 

the cost matrix at the 𝐷𝑁,𝑀 datapoint, the alignment float value can be used to determine how similar two 

datasets are to each other. As the process of aligning data that is similar decreases the values of the cost matrix 

overall, meaning that you now have a comparator algorithm. Because the dataset can be used in many forms, 

the introduction of large multi-dimensional data can be used for each of the algorithm’s inputs. If the algorithms 

reference data was an array of words, and the input was also an array of words, the cost index alignment float 

value would dictate what data in the array was similar to the reference. This form of comparison could then be 

used to match specific words in a reference matrix.  
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Figure 6 – Input signal “Hello” speech (Top) Reference signal “Hello” speech (Bottom) .Self (2023) 

The example shown in Figure 6 shows two different variances of the word “Hello”, where each audio recording 

has been shown in the form of a spectrogram. A spectrogram is a form of image that allows for time and 

frequency of a signal to be displayed at the same time, where frequency is determined by the height of the points 

in the image from 0, commonly found on the y axis, and the time of the image shown in the x axis, and finally 

the signals amplitude is shown as the colours each point within the image. Now that the algorithm has both sets 

of data, the input signal and the reference signal, the process of calculating the alignment can be done. Using 

the same process as mentioned in Example 6, we can create a cost index from attributing the input signal as  𝑥1:𝑁 

and the reference signal as 𝑦1:𝑁. 

  

Figure 7 – Input and Reference signals aligned with the DTW Algorithm. Time alignment shown in physical form 

(Left) Distance Matrix (Top Right) Cost Matrix (Bottom Right) .Self (2023) 

Once the cost index has been created, and the value derived from the 𝐷𝑁,𝑀 datapoint has been taken, the float 

value can now be compared to other values to see if the alignment is similar, meaning that there is a match in 

similarity between two signals. The value with the lowest alignment cost at the datapoint 𝐷𝑁,𝑀 will be the 

reference signal that is most similar.  This technology can then be used to analyse input signals of speech and 

correlate them with a database of thousands of reference words, thus creating a form of speech recognition. 

With the algorithm being very simple in nature, the ability to process datasets with limited hardware capabilities.  
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2.1.3 Hidden Markov Model (HMM) 1980 

A Hidden Markov Model (HMM) is a statistical model that is used to describe the probability of a sequence. The 

sequence itself may have datapoints that are observed, and others that are hidden. The term observable 

datapoints can be derived from any state or data that can be measured, a simplified example of this can be the 

transition of weather from one state to another, where at any point in time one weather state may change from 

rain to no rain.  Hidden datapoints are described as events that are not directly observable, but the overall HMM 

assumes these datapoints are needed to create the observable datapoints. Keeping to the simplified example of 

the weather that changes from one state to another, the assumption of hidden data is responsible for the 

observed changes, through either air pressure changes or wind changes, something that in the classification of 

the example, are datapoints that are not visible. Przemyslaw Dymarski (2011). This means that each model is 

defined by state probability, transition probability, emission probability and initial probabilities, so in order to 

define the HMM, the following five elements have to be defined.  

 

Figure 8 – Mathematical definition of the Hidden Markov Model. Przemyslaw Dymarski (2011).  

The Hidden Markov Model (HMM) was first introduced by Leonard E. Baum, a mathematician and statistician 

who worked with IBM in his early career at IBM Thomas J. Watson Research Centre. In the 1972 paper “Statistical 

Inference for Probabilistic Functions of Finite State Markov Chains” Baum first theorised the use of ‘Markov 

Chains’ to be used for statistical purposes, theoretically outlining the use of Hidden Markov Models for statistical 

analysis. In simple terms the HMM is used to statistically predict the next set of data based on the previous data. 

An example of how this works is with the analogy of the weather changing previously mentioned, if you were 

able to take the hidden data at any one point in time, you could create a statistical presumption upon what the 

next set of data would be. nipunbatra (2018).  
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To do this in theory, the introduction of a Markov Chain needs to be created, outlining the parameters needed 

to change observation states. The Markov Chain assumes that all observations 𝑥𝑡+1 at the future point in time 

denoted as 𝑡 + 1 is dependent on the observation 𝑥𝑡 at the time 𝑡.Put simply, after the model has been given 

the present observation 𝑥𝑡, the future points 𝑡 + 1 are independent of the 𝑥𝑡 observations. 

 Where 𝑃(𝑥𝑡+1|𝑥1, 𝑥2 , … , 𝑥𝑡) = 𝑃(𝑥𝑡+1|𝑥𝑡). 

 

Figure 9 – Markov Chain Example. nipunbatra (2018).  

To calculate the joint probability of the sequence the rules of independence need to be considered, with the 

sequence of Figure 9 – Markov Chain Example. The mathematical notation for the probability is: 

𝑃(𝑥1, 𝑥2 , … , 𝑥𝑡+1) = 𝑃(𝑥1)𝑃(𝑥2|𝑥1)𝑃(𝑥3|𝑥2) …𝑃(𝑥𝑡|𝑥𝑡+1)𝑃(𝑥𝑡+1|𝑥𝑡). 

 

 

 

 

 

 

 

 

 

Figure 10 – Markov Chain for Weather. nipunbatra (2018).  

Observation 𝑥𝑡 at time 𝑡 can take discrete values or 𝐾 states. Factorisation of Figure 10 – Markov Chain for 

Weather. Generalised Markov Chain.  

 
𝑃(𝑥1, 𝑥2, … , 𝑥𝑇) = 𝑃(𝑥1)∏ 𝑃(𝑥𝑡|𝑥𝑡−1)

𝑇

𝑡=2

 

 

(3) 

Markov chains assumption that the conditional probability 𝑃(𝑥𝑡|𝑥𝑡−1) does not change with time. The 

transitional matrix (𝐴): stores the probability of transition between one state 𝑖 to another state defined as 𝑗. 

Transitional matrix represented as 𝐾 × 𝐾 matrix, where the entry 𝐴𝑖𝑗  is given by 𝐴𝑖𝑗 = 𝑃(𝑥𝑡 = 𝑗 | 𝑥𝑡−1 = 𝑖) 

where 𝑖, 𝑗 ∈ {1, 2, … , 𝐾}. Prior probability (𝜋) starting from one available stare is denoted as 𝜋𝑖 = 𝑃(𝑥1 = 𝑖) 

where 𝑖 ∈ {1, 2, … , 𝐾}.  

Now that the model’s architecture is defined, the Hidden Markov Model can now be used in speech recognition. 

Because the model uses the current state to predict the future state, we can use the input of speech and decode 

the speech itself into its subsequent phonemes. Phonemes are around 10-20 milliseconds of speech that define 

the characteristics of a spoken word. For example, if you have the spoken word “Hello” the phonemes for this 

word would be ‘h, eh, l, ow’, adapting the 4 phonemes together we can determine the word “hello”. The way the 

HMM defines these phonemes can be shown in Figure 11. 
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Figure 11 – Process chain for HMM and speech recognition. Swietojanski, Pawel. (2016). 

In the example shown in Figure 11, we can observe the HMM chain of the word “Cup” where each of the HMM 

chains noted as {𝑞1, 𝑞2, … , 𝑞5} represents the phonemes generated from the observations 

{𝑏2(𝑜1), 𝑏2(𝑜2), … , 𝑏4(𝑜5)} so 𝑞2 = /𝑐/, 𝑞2 = /𝑢ℎ/,𝑞2 = /𝑝/. The acoustic properties of the input signal speech 

are represented by its acoustic frames {𝑜1, 𝑜2, … , 𝑜5}. An acoustic frame is a segment of the input speech that 

has features that corrospond to speech, although not outlined in this section, the use of feature extraction is 

used to determine where and when the important data is within the input speech.  

 

Figure 12 – Frame Extraction for speech recognition. Swietojanski, Pawel. (2016). 

In Figure 12 we can see the full process of the Hidden Markov Model and the frame extraction of the original 

input. Where (𝑎) shows an example of a raw waveform with the internal data being speech composed of the 

following sentence “Transcribe me now”. Furthermore (𝑏) and (𝑐) are both linked to the HMM, where (𝑏) is the 

layer defined in Figure 12, as {𝑞1, 𝑞2, … , 𝑞𝑛}, and (𝑐) is notated as {𝑜1, 𝑜2, … , 𝑜5}.  

The equation notating this behaviour is defined as:  

 p(O1:𝑇|w) = ∏p(𝑜𝑡|𝑞𝑡)

T

t=1

 (4) 

And (𝑑) is the finalised output of the process and is defined by the following equation: 

 𝑃(𝑤) = ∏𝑃(𝑤𝑘|𝑤𝑘−1, 𝑤𝑘−2)

𝐾

𝑘=1

 (5) 
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2.1.4  Neural Networks (NN) 1990 

Put simply, a neural network is a method that does very simple calculations, although the calculations may seem 

simple, the overall complexity of the ‘system’ referred to the internal workings of the neural network, can be a 

magnitude of between a simple one layer three node model, to models that have billions of nodes and tens of 

thousands of layers. Furthermore, these systems are used to create a vector graph that encompasses the input 

data together as much as possible, this is an extremely simplified description of the workings of neural networks, 

but the classification itself does not change, no matter what level of detail. So how do they work? Neural 

Networks work by taking in data, processing the data, and outputting results.  

 

Figure 13 – Basic Neural Network. Vuckovic (2015) 

Inputs = {𝑋1, 𝑋2, … , 𝑋𝑝} Parameter weights = {𝑊11,𝑊1𝑗 , … ,𝑊𝑃𝐾}, {𝑊21,𝑊2𝑗, … ,𝑊2𝐾},   Hidden layer nodes = 

{𝑏1, 𝑏𝑗 , … , 𝑏𝑘} sigmoid function {𝑆1, 𝑆𝑗 , … , 𝑆𝑘: 𝐴} =  𝜎(𝑥) =
1

1+𝑒−𝑥  Output Node = 𝑏. 

For example, you need to build a neural network to understand letters of the alphabet, firstly you would need to 

construct the network, for simplicity the area that the letters are written is composed of a [32, 32] array of pixels, 

this works out to be 1024 pixels in total. So, for the purpose of this example, we will define the input nodes of 

the network and have 1024 input nodes, where each node is represented as a pixel. Every node in the network 

including the hidden layers, input nodes and output nodes can only store a float value between 0 and 1. With 

this in mind, we can define the next properties of the network with its hidden layers. There is no mathematical 

basis or outline for the number of layers and nodes needed for the hidden layers of a system, as this is an area 

that is mostly changed and optimised for the purpose of what the network is built for, in this example the network 

will host 2 hidden layers of 512 nodes. Finally, the theoretical network will need an output stage of 10 nodes, 

one for every number of the alphabet, these are [0, 1, 2, . . ,9]. 

Now the theoretical network has been constructed, the connection to the nodes needs to be classified and 

defined, as these connections have data that define its use within the network itself. Keeping to the example of 

the theoretical network we have node  𝑋1 connected to 𝑏𝑗  via the link 𝑊1𝑗. The link connecting these two nodes 

together has 2 pieces of data attributed to it, one being the overall weight of the connection, this is defined as a 

float number which can be a negative number or a positive number, secondly the last piece of data is called the 

‘bias’ and this is also a number similar to the last mentioned. This means that 𝑊1𝑗  could contain the following 

data [−2.32 ′𝑤𝑒𝑖𝑔ℎ𝑡′, 0.65 ′𝑏𝑖𝑎𝑠′]. 
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When an input is sent through this theoretical network, we will find that the network will try and sum all the 

weights and biases from all connections at {𝑏1, 𝑏𝑗 , … , 𝑏𝑘}, and because the node connected to these weights and 

biases can only hold a value between 0 and 1, the system will not work correctly. To stop this from happening 

the network implies a function to the summation of all the weights and biases, this function can be a common 

sigmoid function denoted as 𝜎(𝑥) =
1

1+𝑒−𝑥 in Figure 14. Where 𝑟𝑥 = [0, 1]. 

 

Figure 14 – Basic Neural Network where 𝑟 is the area within the curve 0 to 1. Vuckovic (2015) 

The purpose of this function is to combine all the parameters values together so that the output to the node will 

be a value between the 0 and 1 limitations. This method allows for a uniform approximation of the level of 

parameters at any given node denoted as 𝐴 in Figure 13. 

The summation of these values can be shown by the following: 

 
𝜎(𝑊11𝑏1 + 𝑊1𝑗𝑏𝑗 + ⋯+ 𝑊𝑃𝐾𝑏𝑘 − 𝑏𝑖𝑎𝑠) 

 
(6) 

Where 𝑏𝑖𝑎𝑠 =  {ℎ1, ℎ2, . . , ℎ𝑛} 

Although this equation only represents one single node and its links to previous nodes, the implementation of 

the −𝑏𝑖𝑎𝑠 allows the network to determine at what point will the summation nodes {𝑏1, 𝑏𝑗 , … , 𝑏𝑘} be activated. 

To visualise the entire system together with respect to weights, bias and summation nodes, the following 

expression can be used. 

 
𝜎 ([

𝑊11 𝑊21    ⋯ 𝑊𝑛1

⋮    ⋮      ⋱ ⋮
𝑊𝑛 𝑊𝑛 𝑊𝑛𝐾

] [
𝑏1

⋮
𝑏𝑛

] + [
ℎ1

⋮
ℎ𝑛

]) 

 
𝑏𝑆𝑛

𝑛 =  𝜎(𝑊𝑏𝑛 + ℎ) 

(7) 

 

Where: Inputs = {𝑋1, 𝑋2, … , 𝑋𝑝} Parameter weights = {𝑊11,𝑊1𝑗 , … ,𝑊𝑃𝐾}, {𝑊21,𝑊2𝑗, … ,𝑊2𝐾},   Hidden nodes = 

{𝑏1, 𝑏𝑗 , … , 𝑏𝑘} Sigmoid function {𝑆1, 𝑆𝑗 , … , 𝑆𝑘: 𝐴} =  𝜎(𝑥) =
1

1+𝑒−𝑥  Output Node = 𝑏. 

Now that the foundation of the neural network has been created, the implementation of a speech recognition 

method needs to be added, this is done by allowing the input stage of the network to be an array of phonemes 

in succession. In 2.1.3 the method of splitting speech into frames and processing them is introduced. A simplistic 

way of understanding how this would work with the neural network, is by presuming a dataset that hosts all 

possible word phonemes of any given language. In this example the assumption is made that the input data is 

English. Now the neural network has a system in place that can understand the phonemes as inputs, the addition 

of training data can increase the accuracy of the output of the network.  

How does the neural network understand what is correct or incorrect? It does this by adding a process called 

‘Back-Propagation’. Back-Propagation is a way of giving the neural network the ability to change its own weights 

and parameters in line with the output of the network, the process starts at the output of the network and works 

back through the network all the way to the input, through all the hidden layers and its subsequent nodes. This 
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very complex process can be simplified by implying the use of a cost function, this function is a way of ranking if 

the output of the neural network is the same as the training data, this data will already be referenced with an 

input and required output. The cost function will rank the output of the network with a float value between 0 

and 1.  If the cost function is lower than the desired amount needed to determine if the output is in fact the 

same as the input reference, then the cost function will change the weights of the nodes starting from the output. 

The cost function will change the weights connecting to the nodes by a specific amount determined by a metric 

called ‘step-size’ a self-explanatory variable that is referenced when creating the network, that determines the 

amount of change requested at a minimum for any given value change of the weights.  

 

Figure 15 – Simplified mathematics for back propagation. Silva, S.D. (2020).  

Where: 𝑎𝑁𝐿

(𝐿):(𝐿−𝑁)
 denotes the node, and its place in the array. 𝑤𝑗𝑘

(𝐿−1)
 is the connection to node 𝑗 up to the 

number of nodes at layer (𝐿): (𝐿 − 𝑁) 

 

𝜎

(

 
 
 
 

[

𝑤𝑎1
1 𝑤𝑎2

1    ⋯ 𝑤𝑎𝑁𝐿
1

⋮    ⋮      ⋱ ⋮
𝑤𝑎1

𝑛 𝑤𝑎2
𝑛 𝑤𝑎𝑁𝑁

1

] [

𝑎1
1

⋮

𝑎𝑁𝐿

(𝐿):(𝐿−𝑁)
] +

[
 
 
 
 
 
 𝛿𝐶

𝛿𝑤𝑗𝑘

(𝐿−1)
=

𝛿𝑧𝑗
(𝐿)

𝛿𝑤𝑗𝑘

(𝐿−1)

𝛿𝑎𝑗
(𝐿)

𝛿𝑧𝑗
(𝐿)

𝛿𝐶

𝛿𝑎𝑗

(𝐿)

⋮

𝛿𝐶

𝛿𝑎𝑘
(𝐿−1)

= ∑
𝛿𝑧𝑗

(𝐿)

𝛿𝑎𝑘
(𝐿−1)

𝛿𝑎𝑗
(𝐿)

𝛿𝑧
𝑗

(𝐿)

𝛿𝐶

𝛿𝑎
𝑗

(𝐿)

𝑁𝐿

𝑗=1 ]
 
 
 
 
 
 

)

 
 
 
 

 (8) 

 

Although the final building blocks of the neural network have been created, there has been an assumption that 

the networks connection weights 𝑤𝑗𝑘
(𝐿)

 have been pre initialised. Although most neural networks assume this 

presumption to its architecture, the initialisation of the weights is important to the training of the network’s 

nodes. Using the function mentioned in Figure 15, initialising the networks weights is done using a modified 

version of the back propagation algorithm. As a common ruling, the weights of the network are initially set to a 

random number derived from the following expression, where each weight and bias is set at random. Xavior 

Glorot (2010) uses a stepped approach to this task by first initialising the weights from gaussian or uniform 

distribution, then scaling the weights proportional to the number of inputs to the layer. Firstly, the expression to 

scale the weights proportional to the number of inputs of the layer can be shown as the following. 

 𝑊(𝑙) ≔ 𝑊(𝑙) ∙ √
1

𝑚(𝑙−1)
 (9) 

An example of this would look something like this: 

𝑊𝑖,𝑗
(𝑙)

~ 𝑁(𝜇 = 0, 𝜎2 = 0.01) (10) 

  
Gaussian weight distribution: 𝑁(𝜇 = 0) Features of the layer = 𝑚 
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3.0 Methodology & Research Design  

The following research was conducted in conjunction to Radford (2022) and Silva, S.D. (2020). The overarching 

design of the research is to create a test environment that is capable of fine tuning a pre-trained neural network 

with a dataset unfamiliar to the network itself. Radford (2022) outlines training a neural network for the purpose 

of transcribing and translating speech to text within the boundaries of the languages within the training data, in 

the case of Radford (2022) the network named ‘Whisper’ is able to create transcriptions and translations to 

English, for up to 52 languages. The nature of the research carried out by Radford (2022) allows for the network 

to be retrained in a process called tuning, with all of the documentation and processes used to create and train 

the original model, being set to ‘MIT Licence - Collister, L. (2020). Defines this licence as the following “Users of 

software using an MIT License are permitted to use, copy, modify, merge publish, distribute, sublicense and sell 

copies of the software.” This licence allows for all the networks weights and parameters to be accessible by the 

public domain, allowing the use of these models in fine tuning. Silva. S.D. (2020) defines a basic framework for 

the use of traditional training data and its effects on neural networks with respect to training with data it knows 

and does not know. A combination of method in the research of the two papers, allows a greater understanding 

of the overarching principles and procedures in the research carried out. The research design of the paper was 

constructed on the understanding and foundational knowledge of Radford (2022) and Silva, S.D. (2020).  

3.1 Datasets – 

The datasets were provided by Mozilla and their ‘Common Voice´ corpus. The common voice datasets are 

community driven speech datasets that can offer short and longform speech and corresponding transcriptions. 

The datasets are collected sequentially, meaning that dataset 13.0 will host the data provided in corpus (11.0 

and 6.0). The datasets provide all audio in ‘.mp3’ format, and all relevant transcriptions in ‘.tsv’ formats. Files 

provided outside of the audio dataset include the following (Validated, Invalidated, Training and Other). The 

Validated dataset is a confirmed dataset listing of all files and corresponding transcriptions. Invalidated files 

correspond to files that have no transcription linked to the audio files listed in the file. Training is a mix of both 

data (validated and invalidated). And Other corresponds to the various unrecognised audio files that were not 

validated correctly when submitted to the online corpus at the time of the dataset. 

The following table shows the datasets used for both training and testing of the language models.  

Table 1 – Datasets and corresponding information. Self (2023) 

Dataset Audio Files Validated Invalidated Training Other 

Common Voice 13 1,573,386 1,013,968 264,713 1,013,968 278,333 

Common Voice 11 1,508,536 948,736 252,600 948,736 290,846 

Common Voice 5.1 793,876 435,947 166,816 435,947 175,084 

 

3.1.1 Model Selection/Development & Justification – 

There were three independent speech recognition models used within this paper.  

Table 2 – Model Information. Self (2023) 

Model Name Publisher Model Definition Parameters Sub Models Used 

WHISPER OpenAI Transcribe + Translate 
Small –   241,734,912 
Base –    72,593,920 
Tiny –     37,760,640 

Small 
Base 
Tiny 

Deepspeech Mozilla Transcribe 800,000,000 Deepspeech 0.9.3 

Tuned LMT2 Self Transcribe + Translate 
Small –   241,734,912 
Base –    72,593,920 
Tiny –     37,760,640 

Small x 10 CP 
Base x 10 CP 
Tiny x 10 CP 
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The automatic speech recognition models used in the development of this paper are ‘Whisper’ and ‘Deepspeech’. 

These two models utilise neural networks to achieve their proposed functions. Deepspeech 0.9.3 was created by 

the Mozilla foundation in 2017, where it is currently updated and maintained through the collaboration website 

Github. Mozilla (2019). Whisper was created by OpenAI in 2022. Radford (2022). Where it too is updated and 

maintained on Github. Github (2022). Lastly, the LMT2 model was created by utilising the opensource nature of 

Whispers dataset and models, where the selected models shown in Table 2 are (Small, Base, Tiny). These models 

were ‘fine-tuned’ to a new dataset prior to testing. The term ‘fine-tuned’ refers to the process of re-training the 

existing model on new or improved data that is has never processed before. A common ASR technology that 

Panopto utilises for its video platform automatic speech transcription is ‘Deepspeech’, thus the use of this model 

was needed to conduct the conjecture of the paper. All the models used in the testing of the conjecture were 

based on a number of programming languages, most notably the ‘Python’ language and the ‘Rust’ Language. 

Python is a general-purpose coding language that is dynamically typed and interpreted, thus the code written is 

not compiled into machine code before deployment, this means that the language is inherently slower with 

performance. Python Software Foundation (2019). The Rust programming language is contrasting to python due 

to its memory safety standards and performance benefits of the language being a compiled language. Github 

(2022). Meaning that the code that is deployed will be converted to machine code for better processing and 

performance. The models proposed in Table 1 were developed for the sole purpose of both transcribing speech 

audio to text, and in some cases such as Whisper and the subsequent LMT2 models, will also host an array of 

functions that are able to both transcribe and translate to the English language. Radford (2022). 

3.1.2 Model Training – 

The prerequisites that were needed for this paper varied between libraries and drivers. The primary libraries 

include ‘transformers’, ‘datasets’, ‘huggingface’ and ‘torch’. The use of all these libraries depended on a software 

suite ‘CUDA’, this package was used to allow ‘torch’ the capability of using the graphics processor to increase the 

speed of the overall system. The graphics processor and details can be found in the table 3 below. 

Table 3 – GPU Model Information. Self (2023) 

Producer Name Model Variant Memory CUDA Cores Tensor Cores 

Nvidia RTX 3090 FE 24GB 10,496 328 

 

The datasets from common voice (common voice 13, common voice 11, common voice 5.1) were downloaded 

and extracted to the following specifications shown in table 4 below. 

Table 4 – Dataset File Size. Self (2023) 

Dataset Total Audio Files Audio Delta Download Size MB Extracted Size MB 

Common Voice 13 1,573,386 64,850 76,390 89,570 

Common Voice 11 1,508,536 714,660 74,270 82,480 

Common Voice 5.1 793,876 - 50,060 68,050 

 

The training code created for the use of training the pre-existing model (Whisper – Tiny, Base, Small) was 

constructed in a way that both included the install and management of all libraries and utilities needed for the 

process, and the management of the systems files. The code itself iterated through a simple process. Firstly, 

check if the location of the environment has enough disk space to process the dataset and train the model, then 

continue to resource management and utility package downloads, this specific area of the code made sure that 

any packages linked to the function of the code was preinstalled before processing of the datasets stated. 

Secondly, the code would connect to ‘huggingface’ via the ‘requests’ library in python, so that the datasets used 

to train the models can be downloaded, extracted, and serialised into subsequent folders linked to (validated, 

invalidated, training and other). Then the code would begin by processing the audio.  

One of the key libraries that was used in the next stages of the code was the use of a library called ‘WAV2VEC’ 

from the publishers ‘Facebook Researchers’. research.facebook.com. (2020). This software package was able to 
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encode each audio file and extract the ‘key features’ of the audio and store them in a vector library, for later use 

in training the model. The output of this stage is considered the most processor intense as the use of GPU 

(Graphics Processing Unit) acceleration is not suited for this processing application. The full process of the code 

can be shown in figure 16 below.  

 

Figure 16 – Process Chain of Tuning Code. Self (2023) 

3.1.3 Model Testing – 

The use of key metrics that calculate the accuracy of the data is key to classifying the model’s intrinsic accuracy 

when transcribing speech to text. The metrics used to determine the data accuracy and subsequent data about 

the metrics can be found in Table 5.  

Table 5 – Key Metrics Identity and Calculations. Self (2023) 

Key Metric  Values Identity Description Calculations 

WOR – Word Error Rate 0-100% The total error of ‘UTF-8’ characters between spaces in an array 
matched with a reference array. Calculated by comparing the 
array per space to the reference.  
 

𝑊𝐸𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐿𝑒𝑡𝑡𝑒𝑟𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐿𝑒𝑡𝑡𝑒𝑟𝑠
                                                                      (11) 

 

SER – Sentence Error Rate 0-100% The total error of ‘UTF-8’ characters of the entire array in respect 
to the reference array. Calculated by comparing the total words 
of the array with the output of the array. 
  

𝑆𝐸𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝑊𝑜𝑟𝑑𝑠

𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝑊𝑜𝑟𝑑𝑠
                                                                                     (12) 

 

CER – Character Error Rate 0-100% The total error of ‘UTF-8’ characters with respect to the reference 
characters of the array. By comparing each character to the 
position of that character in the array to the reference array. 
 

𝑆𝐸𝑅 =
𝑇𝑜𝑡𝑎𝑙 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑠

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑟𝑟𝑒𝑐𝑡 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟
                                                                             (13) 
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Table 6 – Key Metrics Code Calculations. Self (2023) 

Metric Code 

WOR def calculate_wer(reference, hypothesis): 
    # Calculate the Word Error Rate 
    wer = edit_distance(reference.split(), hypothesis.split()) / len(reference.split()) 
    return wer 

SER def calculate_sentence_error_rate(reference, hypothesis): 
    # Calculate Sentence Error Rate 
    ref_set = set(reference.split()) 
    hyp_set = set(hypothesis.split()) 
    ser = edit_distance(ref_set(),hyp_set()) / len(reference.split()) 
        return ser 

CER def calculate_cer(reference, hypothesis): 
    # Calculate the Character Error Rate 
    cer = edit_distance(reference, hypothesis) / len(reference) 
    return cer 

 

The code that is listed in Table 6 outlines the use of a reference and a hypothesis, where the reference is the 

validated dataset, and the hypothesis is the results returned from the model’s output.  The use of a reference 

dataset to match future data to, is one of the most important classifications of data used when training a model, 

especially with a model that uses non-standardised objects from a pool of community contributors. Mozilla 

(2019) outlines this issue within its terms and conditions with regards to the common voice datasets. The issue 

that was faced in respect to this was the nonstandard input of the reference data provided from the ‘validated’ 

dataset of the common voice corpus. The reference dataset text reference itself cannot be verified by both 

internal and external examination, only the spoken input into the dataset can be matched. This causes a situation 

where special characters can be injected into the dataset causing discrepancy within the model’s metric 

calculations and subsequent training and tuning of said models. Radford (2020) outlines a ‘text standardisation’ 

section that provides a brief reshaping of the reference data in relation to the common voice corpus used to train 

the initial model. Although the accuracy of the standardisation outlined in the paper suggests a robust approach 

to the issues of the non-standard text issue, the issue of the English language having both ‘English’ and ‘American’ 

classified spelling is outlined. This presumes that all input to the common voice corpus is set to ‘American’ 

classified spelling, which through testing shown in table 7 outlines the differences stated in both the reference 

input and the classified output of the ‘Whisper – Large’ model. 

Table 7 – Non regular outputs from Whisper-Large (Language) . Self (2023)  

Model Name Validated File Validated Transcript Whisper Output Metrics 

Whisper 
Large 

common_voice 
20836413.mp3 
Common-Voice 

Corpus 13.0 

The intention was to 
help to standardise 

prices among locations. 

The intention was to 
help to standardize 

prices among 
locations. 

WER = 10.00% 
CER = 1.56% 

 

The output from the Whisper model matches the context and spelling of all other words in the reference data. 

But changes the ‘s’ to a ‘z’ to conform to the classified American spelling. This standardisation causes a situation 

where although the transcript is almost 100% accurate, the input of said data causes the WER and CER errors to 

increase from the expected 0%. The architecture of the process chain of the tuning code outlines the use of 

‘checkpoints’, these are another word for the term snapshots, where the environment and current progress of 

the dataset and models are saved into its own version. To put simply, the code makes a duplicate of itself at the 

point where a checkpoint is being rendered, allowing the user to test the model and dataset at that point in time 

with reference to what state the models neural network was set to. This type of historic callback allows for better 

technical analysis of the data and the models, due to the stepped approach to the history of the model and being 

able to test at what points the model may or may have not failed or had any loss in performance. Radford (2020) 

outlines in the paper the use of checkpoints and how these can be used to both troubleshoot and optimise the 

current dataset or model, as understanding the current state towards what has happened in the chain of events, 

similar to how HMM’s can create situations where the present and previous inputs can be used to show a 

probability for future events.  
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3.1.4 Model Evaluation Metrics – 

With all the checkpoints and datasets collected for testing the total amount of independent models that needed 

to be tested was 34 separate individual models with various differences in performance and neural network 

weights. The breakdown of these models can be shown in the table below.  

Table 8 – All Model Details. Self (2023) 

 

The models themselves all need to be standardised for the process of calculating the metrics. This includes 

isolating each checkpoint in its own sub directory for later use with an automated tool. The tool in question is an 

automatic script that runs through the sub directories of all the models, and both runs the model on a set corpus 

of speech data defined in the ‘other’ classification of audio within the common voice corpus used. And finally, 

once all transcriptions have taken place, the system will run a subroutine that calculates all the metrics for all 

models and checkpoints sequentially, saving each result in the sub directories of all relevant models. The 

structure and process of the script and architecture of the test environment can be shown with a set of simple 

block diagrams shown below. The reason the automated script was created was to limit error that could be 

caused by logging information throughout the 34 various models, as the tuning stage of the process already 

allocates the apposed sub directories in the data structure of the test environment. This simplifies the process 

to train and calculate the performance of the models in a batch scenario. 

 

Figure 17 – Architecture of the Test Environment (left) Architecture of the Test Loop (Right). Self (2023) 

From the standard format of the test environment, the subdirectory to this folder is the ‘Models’ folder, and the 

specified automation script. Within the model’s folder are the 34 separate sub folders for each model used in 

the tests. Furthermore, the notation of ‘x’ can be derived from the model number within the sub directory in 

question, meaning that within every sub directory there will be a further 2 sub directories, classified as ‘Logs’ 

and ‘Validation’. The Logs directory houses both the reference transcription as a ‘.tsv’ file, as well as the 

subsequent transcription file of the same data type. Although the transcription file is not located in the directory 
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before the automation of the test starts, as this file is created when testing the performance output of the models 

in question. The validation folder houses all the necessary files needed to construct the model’s neural networks 

and checkpoints.  

3.2 Model Testing & Experiments – 

During the initial process of calculating the metrics that outline the model’s performance, there were a number 

of key metrics that were not used but are projected in the results from the automated metric calculation script 

mentioned in 3.1.5. These were ‘F1-Score’ and ‘Word Accuracy’. These metrics were not used in the final 

conclusions regarding the specific model’s performance due to the accuracy of the calculations, the reason for 

this is that in simple terms, the F1-Score itself uses complex float values that were being consistently rounded 

up due to the nature of transitioning integer values to float values. Thus, the with primary testing the results 

determined from this score would fluctuate within a margin of plus or minus 5 percent, far beyond any 

reasonable representation of accuracy. This representation of the data caused discrepancies throughout the 

initial testing period of the project and was subsequently removed from the list of active metrics calculated for 

this paper. Secondly the ‘Word Accuracy’ was determined by calculating the average error across all states of the 

metrics, including the F1-Score metric, this too created data that was out of suspected margin of error that was 

set to zero.  

Table 9 – F1 Score and Word Accuracy Code. Self (2023) 

Metric Code 
F1-SCORE def calculate_f1_score(reference, hypothesis): 

    # Calculate F1-Score 
    if not reference or not hypothesis: 
        return 0.0 
    ref_set = set(reference.split()) 
    hyp_set = set(hypothesis.split()) 
    f1 = f_measure(ref_set, hyp_set) 
    return f1 

Word 
Accuracy 

def calculate_word_accuracy(reference, hypothesis): 
    # Calculate Word Accuracy 
    num_correct_words = sum(1 for ref_word, hyp_word in zip(reference.split(), 
hypothesis.split()) if ref_word == hyp_word) 
    word_accuracy = num_correct_words / len(reference.split()) 
    return word_accuracy 

 

In computer science the term f-score is determined by the accuracy of a neural network, it does this by 

considering all measurements done and comparing it to a completed validated dataset, something that should 

be predetermined outside of the experiment or model itself. In this specification the term f-score is calculated 

by taking all correct points and dividing this number with the correct number of points in the dataset. Although 

this may seem like an ideal metric to calculate the model’s accuracy in regard to the model’s sustained outputs, 

the classification of the metric conforms too closely with the metrics already in use ‘WER, SER, CER’. Where in 

the case of determining the accuracy using the f-score would indicate a similar metric to the character error rate 

metric, where each point in the array would be compared to a validated version of the original dataset. This 

would mean the metric would oppose a similar result to the character error rate metric. 

3.2.1 Tuning Models – 

The models that were tuned stated in table 8 outline the final results of the models with respect to the tuning 

and training process, but this result was formed from countless experiments that was tuned specifically for the 

task of tuning the original Whisper models. The ‘LMT2’ models were all originally trained on one of many specific 

datasets used to train the original model. Common-voice dataset 5.1 was used in the original process of training 

the Whisper model’s before being tuned further in this paper. With the common voice dataset being a corpus 

that has data added to the corpus on every iteration, the dataset ‘common-voice 11’ will have the same dataset 

as the ‘common-voice 5.1’ dataset but with the added data at the iteration 11. Put simply, the model cannot just 

have the latest dataset for further tuning of the model, this is because the very principle of adding data to the 

tuning process forces the model to try and re-train the data it has already been trained on. This can cause issues 
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with the model being too harshly tuned with data it is familiar with, a process called ‘Over Fitting’. A term that 

outlines a model’s ability to readjust its own neural weights and biases in line with data it has already seen, 

creating a situation where the model’s accuracy for other ‘unknown’ data will result in the model losing 

performance. Ying, X. (2019) states that overfitting can be described as the following, “Overfitting is a 

fundamental issue in supervised machine learning which prevents us from perfectly generalizing the models to 

well fit observed data on training data, as well as unseen data on testing set. Because of the presence of noise, 

the limited size of training set, and the complexity of classifiers, overfitting happens.” With the following 

considered, the proposed dataset that would be used to further tune the models would need to have the original 

dataset removed from the training data. The process of this was done with an automated python script that 

would remove any references from one dataset to another, removing all datapoints, leaving only the data that 

was not referenced. The new dataset would then be structured into a format where it could easily be accessed 

by the tuning processes of the automated python scripts.  

Secondly, the initial experiments had an array of various neural network training parameters to both improve 

effectiveness of the training data, and the ability to speed the training process up with the limited hardware 

capacity used in the experiment. The performance of the model tuning was a key metric to consider due to both 

the time constraints and the storage constraints of the experimental phase of the paper, as the model needed 

to be able to be trained efficiently and fast, while still maintaining the level of precision needed to tune the model 

effectively. The performance specifications of the hardware in table 3 outlined the singular processing unit used 

to tune the Whisper models, while still being effective in the process of tuning the models, the limited processing 

power available, created a situation where steps that could lead to better results could have been used. One of 

these key metrics is mentioned in 2.1.4, where the key parameters used to train a model and its weights is the 

step-size. The greater the step size the faster the model can process the training data, but the performance of 

the model would decrease to a significant amount. While decreasing the step-size would benefit the model’s 

accuracy to a point before overfitting takes place but would also increase the processing time to tune the model 

exponentially with the smaller step-sizes used. The code specification for these parameters can be found in the 

‘LMT2-Tuning-(Model)’ script, where the following code can be found that outlines these parameters. The 

parameter that indicates step size is ‘learning_rate’ where this would determine the number of steps for every 

change in weights through the back propagation stage of the training process expressed in 2.1.4 and outlined in 

Figure 15. The training arguments used in this code can be linked to many aspects of the training of the model, 

where ‘max_steps’ indicates the amount of steps needed to complete the training of the model, in conjunction 

to this parameter, the parameter ‘warmup_steps’ is also an additional parameter to the ‘max_steps’ parameter, 

as this allows the model to initialise the models weights and biases with the specified number given in the specific 

argument. These parameters were all altered in many variations of the training code, to allow the hardware the 

ability to be at an optimised balance between accuracy and speed of the training.  

Table 10 – Training Code. Self (2023) 

Parameters Code 

Training 
Arguments 

training_args = Seq2SeqTrainingArguments( 
        output_dir="./LMT2-Small-10",   # change to a repo name of your choice 
        per_device_train_batch_size=10, 
        gradient_accumulation_steps=1,  # increase by 2x for 2x decrease in batch size 
        learning_rate=1e-6, 
        warmup_steps=500, 
        max_steps=10000, 
        predict_with_generate=True, 
        save_steps=1000, 
        eval_steps=1000, 
        logging_steps=100, 
        metric_for_best_model="wer", 
        greater_is_better=False 
        ) 
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3.2.2 Data Collection Process – 

During the process of training the model the tuning script would print a detailed summary of the current state 

of the model that is being tuned, and once the specified steps have been completed referenced in Table 10, the 

script will run an internal test to determine the overall performance of the checkpoint at the exact point in the 

models training process. The overall performance of the current checkpoint will be shown in a log file saved into 

the checkpoint directory under the ‘Validation’ folder, referenced to Figure 17. The details that are logged show 

the current process of the tuning, and its effects on the model’s parameters, shown in the table below is the 

output of the log from 0 percent to 10 percent in the tuning process. As the model itself has had its metrics for 

tuning defined by the arguments mentioned in Table 10, the point at which the model creates a checkpoint and 

subsequent internal test is set to every 1000 steps, thus the evaluation of the checkpoint will be set for every 

1000 steps to a max step size of 10,000 meaning that the following log will only show the progress and evaluation 

of the model tuning from 0 to 10%. The log can show a number of important metrics that can support the 

conclusions set by optimising the models tuning process outlined in 3.2.1, where the script that runs the 

processing of the data and automates the tuning process. Loss – This metric is a normalised float value 

determined by the percentage change of the model at the current point in the tuning process. 

For example, if the tuning process log outlined that the model had no loss, this would indicate that the injection 

of the training data has not changed any of the model’s parameters or weights, thus meaning that the model is 

not being tuned correctly, while having a loss in the context of the log would indicate that the training data is 

being processed by the model correctly. The overall performance of the loss metric should always show a 

decreasing value, this would indicate a sustained increase in performance of the model, although as mentioned 

by Ying (2019) a linear unchanged loss level could indicate model overfitting.  

Table 11 – Training Code Output Log. Self (2023) 

Steps to 10% Code Output 
 
Training  1% 
Training  2% 
Training  3% 
Training  4% 
Training  5% 
Training  6% 
Training  7% 
Training  8% 
Training  9% 
Training 10% 
 
-Evaluation- 
-Evaluation- 
-Evaluation- 
-Evaluation- 
-Evaluation- 
-Evaluation- 
 
 

{----------------------------------------------------------------------} 
{'loss': 3.9085, 'learning_rate': 1.92e-07,               'epoch': 0.0 } 
{'loss': 2.7621, 'learning_rate': 3.92e-07,               'epoch': 0.0 } 
{'loss': 1.4779, 'learning_rate': 5.919999999999999e-07,  'epoch': 0.0 } 
{'loss': 0.9408, 'learning_rate': 7.92e-07,               'epoch': 0.0 } 
{'loss': 0.8258, 'learning_rate': 9.92e-07,               'epoch': 0.0 } 
{'loss': 0.7299, 'learning_rate': 9.898947368421051e-07,  'epoch': 0.01} 
{'loss': 0.6606, 'learning_rate': 9.793684210526315e-07,  'epoch': 0.01} 
{'loss': 0.6071, 'learning_rate': 9.68842105263158e-07,   'epoch': 0.01} 
{'loss': 0.5281, 'learning_rate': 9.583157894736841e-07,  'epoch': 0.01} 
{'loss': 0.4687, 'learning_rate': 9.477894736842104e-07,  'epoch': 0.01} 
{----------------------------------------------------------------------} 
{'eval_loss':                   0.540   # Model Weight Change          } 
{'eval_wer':                   24.288                                  } 
{'eval_runtime':             5190.101   # Seconds                      } 
{'eval_samples_per_second':     3.154                                  } 
{'eval_steps_per_second':       0.394                                  } 
{'epoch':                       0.01                                   } 
{----------------------------------------------------------------------} 

 

The evaluation stage of the log shows the internal metrics being calculated for the checkpoint of the model at 

that point in time, where the code will take 1000 validated samples and test the performance of the model using 

the metrics outlined in 3.1.4. The log will also print other valuable metrics on performance such how long the 

evaluation has taken in seconds and how many samples per second the model was able to process during the 

evaluation process. 
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3.2.3 Data Collection Instruments and Procedures – 

With 34 models that all have specific metrics that need to be compared, the appointment of a singular diagram 

or graph to express the complexities of the results would be too complex to understand at point value. The 

models are split into their fundamental versions i.e. (Small, Base, Tiny) with respect to the key metrics that were 

calculated (WER, SER, CER) with the key metrics being compared per checkpoint to the other model’s metrics at 

any one time within the checkpoint list. The overarching software that was used to display said results was mixed 

between ‘Microsoft Excel’, and Pythons internal mapping libraries ‘matplotlib’. These software packages were 

used for both accuracy and ease of understanding basic values in the results, with more basic designs relegated 

to the excel diagrams and more complex standardised grids and figures expressed in the python package 

mentioned above. The ‘matplotlib’ package was used specifically due to its use of technology and data structures 

similar to the use of ‘Matlab’ a common software package for data science. 

3.2.4 Software Defined Internal Testing – 

Internal testing comprised of a metric calculation script that was able to process all the models sequentially and 

output results based on the performance of the model when injected with 20,000 validated and standardised 

audio files. The 20,000 audio files will be known as ‘20K’. The 20K files were specifically used from the dataset of 

‘Common Voice 13.0’ as the original models from Whisper i.e. (Small, Base, Tiny) before fine tuning into 

checkpoints, would not have been trained on the files used to test, thus no bias on overfitted audio files that the 

model has already been trained on will be considered. This step was taken into consideration by the steps used 

when Radford (2022) expresses the need to test the models’ capabilities with data that is unknown to the 

models’ parameters. This objective created a test environment which all models could be classified and tested 

without any internal bias or data limitations. The process of creating the dataset used for the testing phase can 

be seen in 3.3.1 Data Standardisation. 

3.2.5 Online Testing – 

Online testing was conducted though the website ‘golisten’ an online platform that is able to create online audio-

based tests and save the results subjectively and accurately. This platform was used as an alternative to the 

common ‘WebMUSHRA’ format due to its simplicity and ease of use for both the creator of the test, and its 

participants. The test itself was streamlined to only test the following models (Deepspeech, Whisper Small, 

Whisper Tuned LMT2 Small). The reasoning for using the largest models in the dataset, both with the master 

model and its fine-tuned model being the classified ‘Small’ model was a decision that would allow a more 

accurate representation of the abilities of the models. Put simply, the model with the best accuracy overall will 

be matched with the best model with the best accuracy for the test, as measuring 34 variants of the same test 

scenario would deter participants from answering correctly or answering anything at all due to the high 

information ingest needed for every test. The online test comprised of 10 questions with real world recordings 

of lectures from between (December 2021 to December 2023), with the recording locations being at ‘Derby 

University, United Kingdom’ within the discipline of ‘MSc Audio Engineering’. These recordings were used due to 

the limited corpus available from Panopto. Each audio file was a segment of a lecture that was already published 

for students to recite, solidifying a test scenario explicitly similar in nature to what would be expected for the 

use of the models. Throughout the 10 questions, the participants were to listen to an audio file from a lecture 

mentioned above, and determine a multiple choice question on what transcription was able to replicate the 

audio with the most accuracy, The multiple choice question was split into the results from each of the key models 

stated (Deepspeech, Whisper Small, Whisper Tuned LMT2 Small), with each question having the order of the 

questions transcriptions set at random, eliminating any common bias on transcript positioning for each question. 

This would continue throughout the 10 allocated questions, with each question answered the participant would 

be given a section to express any reasoning or concern with the previous question, though this was not 

mandatory. Prior to the test mentioned above, the use of a pilot test was carried out as a prerequisite to 

determine any common problems or issues that may change the accuracy of the results proposed in the primary 

testing. The pilot test comprised of 3 audio files similar to the primary test in nature of audio context, with each 

of the transcriptions originally being a random selection of the 34 models’ variants used for the paper. With the 

pilot theoretically setting each transcription model at random, this caused a large discrepancy within the 

transcripts as intrinsically the larger more robust models of any variant would outperform other less accurate 
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models. With this information the use of the most accurate and robust model was used in the primary testing to 

remove the discrepancy between each test.  

3.2.6 Testing Limitations – 

Test limitations are a key aspect of any data driven experiment, and thus should be considered when experiments 

are proposed and used to collect data. In this paper the online test was carried out by the participants by 

subjecting them to multiple audio recordings, then asking to select various transcriptions of the audio recordings 

in sequence. Information about the online testing can be found in 3.2.5. Because the way humans interpret audio 

stimulus varies between each person, the presumption that all data collected within the dataset will be accurate 

to some degree is false. The reasoning for this is that the online test itself although realistic to the modern 

application of the conjecture of the study, does not account for the bias in the generalised understanding of the 

data that is presented to the participants. An example of this is the use of native English speakers and comparing 

their ability to understand speech with varying accuracy to non-native English speakers. This classification of bias 

is defined by the online test limitation on the data collected, due to the small pool of participants used in the 

online test, the outlining bias will appear to be more visible within the result data. Classifying the proposed bias 

as noise in an experiments result, the greater datapoints you have within the set, the lower the noise impacts 

the overall averages of the test data.  Comparing this aspect of bias with the offline test, although more accurate 

in the details of the data being tested, implied its own bias. The reasoning behind this assumption is that the 

offline test consisted of generating metrics based on the similarities of binary outputs, with the classification of 

these metric points being either yes or no for any datapoint being tested. The limitation of this classification is 

defined by the ability to understand the context of the data. As mentioned above, the implications of the online 

test outline the need to define a greater dataset, but this does not include creating a scenario that the 

participants need to contextually understand what is being said in the test recordings. This implies that the 

balance between participants and the lack of context is the main limitations to the overarching test carried out 

by the study. Put simply, the online test lacks the ability to de-noise the bias created by the diverse context given 

by the human nature when it comes to understanding of audio presented to them. Whereas the online test 

cannot understand the context of the test, thus presented with a situation where contextually a result is correct, 

the offline test will define such result as false.  

3.3 Data Standardisation – 

Standardisation is the process of removing unwanted data from a dataset or method, the idea being that the 

removal of such data will improve the accuracy of the results collected. In the case of the datasets processed by 

the tuned neural network, the use of a data standardisation procedure allows for the results of any test using 

standardised dataset to be classified as robust and accurate. Because the dataset used in the study ‘common-

voice’ is community driven, the overarching accuracy of the dataset can be put into question.  

3.3.1 Special Characters – 

During the initial stages of training the ‘Whisper’ model to the new fine-tuned ‘Whisper – LMT2’ variant, the 

process of the training script outputting the training results in the form of the evaluation metrics outlined in 3.3.2 

– Table 11 showed lower metrics than expected from the original Whisper metrics defined in Radford (2022). An 

investigation into the process of the evaluation script showed that the training scrip was using the defined 

classification validation dataset with the corresponding ‘.TSV’ file that outlined the file names and the 

corresponding transcription, this would then be used to match the results of the checkpoint of the training 

process with key metrics like WER. The validated ‘.TSV’ file and subsequent internal data was split into columns 

‘Path, Sentence’ where the sentence section would be parsed with the data output of the model. Due to the 

community driven aspect of the dataset, some of the inputs from the community dataset implied special 

characters within the dataset that could not be created by the model during the evaluation stage, causing a 

situation where the model output would be defined as wrong, due to the reference data having special 

characters within the dataset. Radford (2022) outlines the use of a text standardisation procedure that defines 

all special characters from the output of the model, but not the inject to the model during the training of the 

model. Radford (2022) also presumes that all English spelling is converted to ‘American Spelling’ defined by the 

results shown in 3.1.3 – Table 7.  
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Table 12 – Invalid Characters found in Common Voice 5.1 – Validated.tsv File. Self (2023) 

Set Path 
.mp3 

Sentence Invalid 
Character 

5.1 
 
5.1 
 
5.1 
 
5.1 
 
 
5.1 
 
 
5.1 
 
5.1 
 
5.1 
 
 
5.1 

22215682 
 
543325 
 
17406427 
 
17552437 
 
 
20274470 
 
 
1726832 
 
590018 
 
18698093 
 
 
18698122 

"It was also known as the ""Sunflower"" 
 
"He wasn't an alchemist!" 
 
Why did you tell me? 
 
On a scale from one (for not at all) and ten (for very much), how much 
pain do you feel? 
 
"Karina Smirnoff of ""Dancing With The Stars"" hosted the following 
month." 
 
Does this mean he will go to jail? 
 
The boy was also saddened; his friend was in pursuit of his destiny. 
 
"""Key: P–games played, W–games won, D–games drawn; L–games lost, %–win 
percentage""" 
 
"Golino is the niece of ""L'Espresso"" journalist Enzo Golino; her brother 
is a musician." 

“” 
 

“”! 
 
? 
 

(),? 
 
 

“”. 
 
 
? 
 

;. 
 

;“”-,:% 
 
 

“”'; 
 

 

The table above shows an example of invalid characters that are present in the validated file within the dataset, 

where in some cases the special character has no reason to be used in the classified sentence. This is the 

validated file that is parsed when evaluating the metrics when fine tuning the neural network. With this non-

standard dataset the need to remove all reference files with invalid characters needs to be done before the use 

of any training data is used in the fine tuning process, to do this the use of a python script that finds and removes 

the items within the ‘validated.tsv’ file with respect to the audio file itself too being deleted from the dataset, 

resulting in a dataset that has files that do not host any invalid characters within the validation file or the audio 

files. The reason for the use of audio files being deleted in this case is to prevent the model being given any 

classification of audio that does not have a corresponding validated transcription for training.  

Table 13 – Text Standardisation Code. Self (2023) 

Code 
with open(tsv_file1, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in tqdm(reader, desc="Processing rows", unit="row"): 
        path = row['path'] 
        sentence = row['sentence'] 
        if ( 
            any(char in sentence for char in "',!-;£$%^&*()|~@→‘\\?'\"") 
            or sentence in unique_sentences  # Check if the sentence has already been encountered 
        ): 

 

The code shown in Table 13 shows the array of special characters that the script will iterate over the validated 

dataset with, depending on the specific characters shown in the array ‘sentence’ referring to the sentence section 

of the ‘validated.tsv’ file.  

3.3.2 Longform & Shortform Transcripts – 

In conjunction with the work presented in 3.3.2, the script that would remove special characters from the 

specified dataset would also determine the overall length of the sentence within the dataset. The reason for this 

is based on primary test results of varying transcript lengths changing the results of the metrics involved when 

evaluating the model’s performance. Initial results indicated that the model was substantially accurate with 

shortform sentences with 3 to 5 words, this was indicated with a WER substantially higher than the overall 

metrics calculated when testing the model’s performance on a greater dataset including files that are more than 
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5 words long. With the context to the application of the model, where the model may be subjected to both long 

and shortform tasks, the use of an average was needed to accurately determine the overall performance of the 

model. With primary parameter for sentence length is defined as a sentence that is no longer than 30 characters 

or less than 15 characters in length, including any removal of special characters shown in Table  14.   

Table 14 – Text Standardisation Code with respect to sentence length. Self (2023) 

Code 
with open(tsv_file1, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in tqdm(reader, desc="Processing rows", unit="row"): 
        path = row['path'] 
        sentence = row['sentence'] 
        if ( 
            any(char in sentence for char in "',!-;£$%^&*()|~@→‘\\?'\"") 
            or len(sentence) < 15  # Check if the sentence is less than 5 characters long 
            or len(sentence) > 30 # Check if the sentence is more than 15 characters long 
            or sentence.count('.') > 2  # Check if the sentence has more than 2 full stops 
            or sum(1 for c in sentence if c.isupper() and c.isalpha()) > 1  
            or sentence in unique_sentences  # Check if the sentence has already been encountered 
        ): 
            file_path = os.path.join(folder_path, path) 
            if os.path.isfile(file_path): 
                os.remove(file_path) 
        else: 
            paths_to_keep.add(path) 
            unique_sentences.add(sentence) 

 

3.3.3 TSV Standardisation – 

As mentioned in 3.3.2 and 3.3.3, the removal of special characteristics within the dataset was used to create a 

test environment that is as robust as possible without introducing bias. Once this process has been completed 

the overall volume of test data is decreased substantially, allowing for further refinement to increase the 

accuracy and unbiased accuracy of the models when testing metrics. The ‘validated.tsv’ file used in the examples 

above is split into a corpus of 20,000 audio files at random based on a random number generator within the 

boundaries of the number of audio files present at the time the process is run. Returning 20,000 audio files that 

have been randomly selected to be the test dataset to evaluate all 34 variants of the models used in the study 

outlined in table 8. This standardisation also included creating a new format for the testing processes to operate 

from, where only the information that is needed for the test is given to the models. The reason this is important 

is due to the format of the ‘validated.tsv’ file before it is standardised, as the original format includes the 

following information that is not needed for the purpose of testing a models performance metrics, (up_votes, 

down_votes, age, gender, accent, locale, and segment). These cumulus and corresponding data points are 

removed in the process of the ‘validated.tsv’ standardisation.  

3.4 Software & Data Limitations – 

The original models that were trained in the paper Radford (2022) outlined a test environment that comprised 

of a dataset that housed over 680,000 hours of speech data. This data was then sent into a purpose-built neural 

network to train it on both transcription and translation. The hardware needed or used to process the original 

models is not disclosed by Radford (2022) but with key parameters that were used when initiating training were 

limited by the hardware used in the fine-tuning process of the ‘Whisper – LMT2’ model the calculations come to 

an approximation of a test environment being over 1 million times more capable in both hardware specific 

performance and memory bandwidth limitations. This poses an issue when determining the hardware used to 

fine tune the model and its ability to accurately create its own changes within the models’ structure with the 

limited bandwidth available with the hardware mentioned in table 3. This can create a situation where if you 

create a test environment that exceeds the current hardware limitations when fine tuning the original model, 

the test environment will fail due to hardware limitations, but the flipside to this scenario is that the parameters 

mentioned in table 10, do not allow the injection of the training data enough bandwidth to create any meaningful 
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change within the model as its training. Put simply, there is a hardware limit that is needed to accurately change 

a model at any size. Limiting hardware capability can cause errors. 

Hardware limitations also include the use of adequate storage for the datasets, as well as the overall hardware 

needed to run the training. With the prerequisites of the training process completed the original dataset can be 

converted from its original size of 89GB referencing common voice corpus 13, to a size of 1250 Gigabyte with all 

files converted to a format used to train the specified model. With this taken into consideration the minimum 

storage needed to train the original model was 39 Terabyte  compressed and over 40 Petabytes uncompressed.  

4.0 Results – 

Calculating the overall results of the metrics for the fine-tuned LMT2 Whisper models was carried out under the 

guidance of Ohri, a (2029) with statistical analysis of data driven by the use of logical reasoning mathematics 

outlined in the table below. The results that were used to calculate the overall score were (WER, CER, SER, WA, 

F1) with the output of the calculations being the ‘Overall Score’ calculated by taking the summation of the values 

and multiplying them by the ‘F1 Score’. Because the F1 Score is defined by metrics calculated from the (WER, 

CER, SER, WA) metrics, the overarching multiplication of a value less than 1 is necessary to calculate an overall 

score.  

Table 15 – Full Metric results for the Fine Tuned LMT2 Whisper models (Small, Base and Tiny). Including overall 

score. Self (2023) 

 

 

 

∑(𝑊𝐸𝑅𝑖 + 𝐶𝐸𝑅𝑖 + 𝑆𝐸𝑅𝑖 + 𝑊𝐴𝑖 ∙ 𝐹1𝑖)

𝑛

𝑖=1

 

 

𝑊𝐸𝑅𝑖 = 𝑊𝑜𝑟𝑑 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡  

𝐶𝐸𝑅𝑖 = 𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡  

𝑆𝐸𝑅𝑖 = 𝑆𝑒𝑛𝑡𝑒𝑛𝑐𝑒 𝐸𝑟𝑟𝑜𝑟 𝑅𝑎𝑡𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡  

𝑊𝐴𝑖 =   𝑊𝑜𝑟𝑑 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ  𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡  

𝐹1𝑖 = 𝐹1 𝑆𝑐𝑜𝑟𝑒 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑖𝑡ℎ 𝐶ℎ𝑒𝑐𝑘𝑝𝑜𝑖𝑛𝑡  
𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒𝑖 = 𝑊𝐸𝑅𝑖 + 𝐶𝐸𝑅𝑖 + 𝑆𝐸𝑅𝑖 + 𝑊𝐴𝑖 ∙ 𝐹1𝑖 

(11) 
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Because the array of numbers outlined in table 15 is complex, the introduction of graphical images creates a 

better image of what is happening within the metric results. Shown below is a series of figures outlining the 

performance of the ‘Overall Score’ based on the upper and lower limits of the score range.  

 

Figure 18 – Overall Score performance of the Tiny LMT2 Fine Tuned Model. Lowest Score being set at a value of 

132.92549 at checkpoint 8. Self (2023) 

 

 

Figure 19 – Overall Score performance of the Base LMT2 Fine Tuned Model. Lowest Score being set at a value of 

113.18233 at checkpoint 5. Self (2023) 

 

Figure 20 – Overall Score performance of the Small LMT2 Fine Tuned Model. Lowest Score being set at a value 

of 113.3189 at checkpoint 1. Self (2023) 
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In the models presented the overall lowest score comes from the ‘Base’ model at checkpoint 5, closely followed 

by checkpoint 1 of the ‘Small’ model at checkpoint 1. In addition to the fine-tuned LMT2 models the use of the 

original Whisper models classified as the Master models, as well as the original automatic speech recognition 

model used by Panopto is displayed in the following tables and figures. The master models include the following 

(Small, Base and Tiny) with the additional data given from the Deepspeech ASR model 0.9.3. 

Table 16 – Full Metric results for the Whisper Master models (Small, Base and Tiny). Including overall score. Self 

(2023) 

Whisper Master WER CER SER WA F1 Overall Score 
Tiny 63.28 73.99 24.15 64.97 0.6904 206.275288 
Base 19.12 12.52 16.57 80.15 0.8343 115.079145 
Small  15.31 11.1 13.64 87.02 0.8878 117.306356 

 

Table 17 – Full Metric results for the Deepspeech 0.9.3 ASR model, Including overall score. Self (2023) 

Deep Speech WER CER SER WA F1 Overall Score 
0.9.3 66.31 23.08 62.21 34.28 0.3779 164.554412 

 

Table 18 – Overall Score results for Master Models. Self (2023) 

Master Models Overall Score 

WSPR Tiny 206.275288 

WSPR Base 115.079145 

WSPR Small  117.306356 

DS 0.9.3 164.554412 

 

 

Figure 21 – Overall Score performance of the Master Models. Lowest Score being set at a value of 115.079145. 

Self (2023) 
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Outlining the best preforming LMT2 with its counterpart before and after the training procedure has taken place 

the following calculations can be carried out, in addition to a T-Test to define the mean difference calculated. 

Ohri, a (2029) defines that a set group of results with the purpose of defining if the datasets are statistically 

different can be expressed by preforming a T-Test. The test itself simply compares the mean of two separate 

groups to determine if they are statistically different from each other. 

𝑊ℎ𝑖𝑠𝑝𝑒𝑟 𝑀𝑎𝑠𝑡𝑒𝑟 𝐵𝑎𝑠𝑒 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 = 115.079145 
𝐿𝑀𝑇2 𝐵𝑎𝑠𝑒 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑆𝑐𝑜𝑟𝑒 = 113.18233 
|𝑉1 − 𝑉2|

[
(𝑉1 + 𝑉2)

2
]
 × 100 =   

|113.18233 − 115.079145|

[
(113.18233 + 115.079145)

2
]
× 100 =  

|−1.896815|

[
228.261475

2
]
 × 100 

= 
1.896815

114.1307375
× 100 = 0.0166197 × 100 

𝑉𝑎𝑙𝑢𝑒 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒: 1.66197% 
 

(12) 

This result implies that the overall score difference between the two models is approximately 1.66197%. To 

define the statistical variance between the value defined by both models the use of a t-test is used in the 

following tables and equations. 

Table 19 – Model results comparing Whisper Base Master and the fine-tuned LMT2 Base Model. Self (2023) 

Models WER CER SER WA F1 Overall Score 
Base CP 5 17.78 11.23 16.3 81.09 0.837 113.18233 
WSPR Base 19.12 12.52 16.57 80.15 0.8343 115.079145 

 

Table 20 – Statistical T-Test Independent Means. Self (2023) 

Model Array [1, 2] Diff (X - M) Sq. Diff (X - M)^2 M: SS: 
LMT2 CP 5 17.78 -22.29 496.84 40.07 10460.88 

 11.23 -28.84 831.74   
 16.3 -23.77 565.01   
 81.09 41.02 1682.65   
 0.837 -39.23 1539.22   
 113.18233 73.11 5345.43         
WSPR Base 19.12 -21.59 466.22 40.71 10519.9 

 12.52 -28.19 794.8   
 16.57 -24.14 582.85   
 80.15 39.44 1555.34   
 0.8343 -39.88 1590.25   
 115.079145 74.37 5530.44   

 

𝐿𝑀𝑇2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠: 𝑁1 = 6 | 𝑀1 = 40.07 | 𝑆𝑆1 = 10460.88 
𝑊𝑆𝑃𝑅 𝑅𝑒𝑠𝑢𝑙𝑡𝑠: 𝑁2 = 6 | 𝑀2 = 40.71 | 𝑆𝑆2 = 10519.9 
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚𝑒: 𝑑𝑓1 = 𝑁1 − 1 = 5 | 𝑑𝑓2 = 𝑁2 − 1 = 5 

𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑟𝑟𝑎𝑦𝑠: 𝑠1
2 =

𝑆𝑆1

𝑁1 − 1
=

10460.88

5
= 2092.18 | 𝑠2

2 =
𝑆𝑆2

𝑁2 − 1
=

10519.9

5
= 2103.98 

𝑃𝑜𝑜𝑙 𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒: 𝑠𝑝
2 = (

𝑑𝑓1
𝑑𝑓1 + 𝑑𝑓2

) × 𝑠1
2 + (

𝑑𝑓2

𝑑𝑓1 + 𝑑𝑓2

) × 𝑠2
2 

𝑠𝑝
2 = (

5

10
) 2092.18 + (

5

10
) 2103.98 = 2098.08 

𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛𝑠 𝑓𝑜𝑟 𝑎𝑟𝑟𝑎𝑦𝑠: 𝑠𝑀1
2 =

𝑠𝑝
2

𝑁1

= 
2098.08

6
= 349.68 | 𝑠𝑀2

2 =
𝑠𝑝

2

𝑁2

=
2098.08

6
= 349.68 

𝑇 − 𝑣𝑎𝑙𝑢𝑒 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 𝑡 =
𝑀1 − 𝑀2

√𝑠𝑀1

2 + 𝑠𝑀2

2

=∶ 𝑡 =
−0.64

√699.36
 

𝑡 = 0.02429 | 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.49055 | 𝑝 < .01   

(13) 
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The online testing phase of the study expressed in section 3.2.5 can be expressed in the following tables and 

graphs. Note the initial data displayed will be the underlying data from the test itself. The table below shows the 

array of transcriptions and Answers to such transcriptions in reference to the test questions.  

Table 21 – Test Outline showing the model outputs and the corresponding selections of results. Self (2023) 

 

The test results themselves were separated into groups that were classified as participants that were non-native 

English speakers and those who were native English speakers. The reason for this divide is to ensure that any 

bias that may be a result of a result being classified by the participants native ability to understand the question, 

was not to impact the overall mean average calculated. The table below indicates the results of the test with 

respect to the LMT2 model and Whisper Model.  

Table 22 – Test Outline of model outputs and the corresponding selections of results T-Test. Self (2023) 

Model Results Array Diff (X - M) Sq. Diff (X - M)^2 

LMT2 [5,2,5,8,4,5,8,7,3,6,5,7,2,2,6,4,5,3,8,8,8,4] M: 5.23 SS: 91.86 

WSPR [5,8,4,2,6,5,2,3,7,4,5,3,8,8,4,4,5,7,2,2,2,6] M: 4.64 SS: 91.09 

 

𝐿𝑀𝑇2 𝑅𝑒𝑠𝑢𝑙𝑡𝑠: 𝑁1 = 22 | 𝑀1 = 5.23 |𝑆𝑆1 = 91.86 
𝑊𝑆𝑃𝑅 𝑅𝑒𝑠𝑢𝑙𝑡𝑠: 𝑁2 = 22 | 𝑀2 = 4.64 | 𝑆𝑆2 = 91.09 
𝐷𝑒𝑔𝑟𝑒𝑒𝑠 𝑜𝑓 𝑓𝑟𝑒𝑒𝑑𝑜𝑚𝑒: 𝑑𝑓1 = 𝑁1 − 1 | 𝑑𝑓2 = 𝑁2 − 1 

𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑜𝑓 𝑎𝑟𝑟𝑎𝑦𝑠: 𝑠1
2 =

𝑆𝑆1

𝑁1 − 1
 | 𝑠2

2 =
𝑆𝑆2

𝑁2 − 1
 

𝑃𝑜𝑜𝑙 𝑣𝑎𝑟𝑖𝑒𝑛𝑐𝑒: 𝑠𝑝
2 = (

𝑑𝑓1
𝑑𝑓1 + 𝑑𝑓2

) × 𝑠1
2 + (

𝑑𝑓2

𝑑𝑓1 + 𝑑𝑓2

) × 𝑠2
2 

𝑉𝑎𝑟𝑖𝑒𝑛𝑐𝑒 𝑜𝑓 𝑚𝑒𝑎𝑛𝑠 𝑓𝑜𝑟 𝑎𝑟𝑟𝑎𝑦𝑠: 𝑠𝑀1
2 =

𝑠𝑝
2

𝑁1

 | 𝑠𝑀2
2 =

𝑠𝑝
2

𝑁2

 

𝑇 − 𝑣𝑎𝑙𝑢𝑒 𝐶𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑖𝑜𝑛: 𝑡 =
𝑀1 − 𝑀2

√𝑠𝑀1

2 + 𝑠𝑀2

2

 

𝑡 = 0.93901 | 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 0.176547 | 𝑝 < .01   

(14) 
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Lastly with the assumption that the model LMT2 Base is compared with the Deepspeech model 0.9.3 with 

regards to the research conjecture, that being the model accuracy is comparable to the ASR technology used 

within the Panopto transcription. 

Table 23 – LMT2 Base CP 5 Metric Comparison with Deepspeech 0.9.3 ASR model. Self (2023) 

Model Function WER CER SER WA F1 Overall Score 
Base CP 5  17.78 11.23 16.3 81.09 0.837 113.18233 
DS 0.9.3  66.31 23.08 62.21 34.28 0.3779 164.554412 

 A-B Diff 48.53 11.85 45.91 46.81 0.4591 - 

 Difference % 115.434 69.076 116.953 81.148 75.578 91.6378 % 

  

Using a basic form of arithmetic, the [A-B] differences between each of the metrics from both the LMT2 Base CP 

5 model and the Deepspeech 0.9.3 models, can be calculated. Using the mean average difference between all 

resulting metric differences, the overall performance difference between the two models can be statistically 

classified as the LMT2 Base CP 5 model being 91.6378 percent more accurate across all collected metrics than 

the Deepspeech model 0.9.3 ASR model. Finally, each of the key metrics can be visualised in comparison to the 

model and the checkpoints in the following figures that outline the checkpoints for each of the models trained 

as well as where each of the metrics compare with the other models within the set.  

 

 

Figure 22 – Word Error Rate (WER) comparison in reference to the LMT2 models and subsequent checkpoints. 

Self (2023) 
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Figure 23 – Character Error Rate (CER) comparison in reference to the LMT2 models and subsequent 

checkpoints. Self (2023) 

 

 

Figure 24 – Sentence Error Rate (SER) comparison in reference to the LMT2 models and subsequent checkpoints. 

Self (2023) 
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Figure 25 – Word Accuracy (WA) comparison in reference to the LMT2 models and subsequent checkpoints. Self 

(2023) 
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5.0 Discussion – 

Although the results of the tests show a somewhat fragmented result, the underlying points can be made, both 

from a statistical standpoint and a subjective standpoint within the confines of the online test results. During the 

initial stages of the research the prospective that the larger model defined by its parameters being ‘Whisper 

Small’ would preform at the highest accuracy. This initial correlation does not show to be true within the results 

shown in table 15, as the most accurate model in reference to the ‘Overall Score’ is defined by the ‘LMT2 Base 

Checkpoint 5’ model. Statistical analysis using a T-Test at significance <.01 defined by the findings by Ohri, A 

(2019) show no significant deviations between results or all items in the datasets shown and expressed in table 

19 and equation 13. What can be drawn from these results is that with respect to the ‘Whisper Master Tiny, 

Base’ the process of fine tuning the models ‘LMT2 – Tiny, Base’ show a positive correlation that the tuning of 

further data improves the overall accuracy across the metrics tested. Data to support this can be seen in the 

following tables, 15, 16, 17 and 19.  

Online testing does not show any statistical deviation at <.01 between the use of the ‘LMT2’ model and the 

‘Master Whisper’ model, although these results show a contrasting argument with respect to the ASR technology 

used for Panopto transcriptions. The use of ‘Deep Speech 0.9.3’ within the online tests showed no data 

representing any links to transcriptions, meaning this model was not selected in any of the responses from the 

participants. With a statistical analysis of ‘Deep Speech 0.9.3’ and its offline performance with respect to ‘LMT2 

– Base Checkpoint 5’ the overall accuracy of ‘LMT2 - Base Checkpoint 5’ is 91.6% higher than that of ‘Deep Speech 

0.9.3’ shown in table 23. A reasonable assumption that the ‘Whisper Master Small’ was somewhat outperformed 

by the ‘LMT2 – Base’ model can be roughly attributed to the hardware limitations of the training process outlined 

in 3.4.  

Where the assumption that the tuning parameters limited by hardware were sufficient enough to change the 

data structure of the smaller models, while the larger model ‘Whisper Master Small’ was too large in comparison 

to the parameters that were used in the tuning process, creating a situation where the model was not being 

trained correctly. This assumption can be expressed by observing table 15 where the ‘Overall Score’ of each 

checkpoint of the ‘LMT2 – Small’ model, as from checkpoint 1 to 10, the score increases, indicating the model is 

becoming less accurate with each training checkpoint. This can also be seen by the individual metrics outlined in 

table 15 and shown in Figure 20 as the model throughout the training process indicates a positive curve with 

each increasing checkpoint the model’s overall performance is decreasing and the overall accuracy of the model 

is deteriorating with each step. 

With the overall conjecture of the research being a comparison of Deepspeech and its accuracy compared to 

both the tuned LMT2 models and the original Whisper models, the outline of hardware capabilities needs to be 

considered. With the current size of the Deepspeech 0.9.3 model having approximately 800 million parameters 

shown in table 2, the use of hardware needs to be considered when processing any meaningful data. Statistically 

a model parameter is a 32-bit number at 4 bytes of memory usage, multiplying this number with the total 

parameters the result comes to approximately 3,200,000,000 bytes, or 3,200 MB in overall memory usage. This 

number is only considering the model itself, not the underlying models periphery software.  

Comparing this result to the use of the LMT2 model with its 72,593,920 parameters, the overall memory usage 

for this model is approximately 290.37 MB. Meaning that the LMT2 model is 166.72% smaller than the 

Deepspeech model, equating to the LMT2 model being 11 times smaller than the Deepspeech model. This result 

indicates that the overall usage of the LMT2 model would not only be more beneficial from a hardware 

standpoint but with the LMT2 model being over 3.72 times more accurate then Deepspeech with respect to 

WER, 2 times more accurate with respect to CER, 3.8 times more accurate with respect to SER and finally, 3.36 

times more accurate with respect to WA. 
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6.0 Conclusion –  

Overall, the models created by ‘Open AI’ with reference to (Small, Base, Tiny) can be further trained effectively 

with new unrecognised data to improve overall accuracy of the models. The fine-tuned models as well as the 

master models all outperformed the automatic speech recognition model used by ‘Panopto’ in every metric. 

Statistically, the LMT2 model variants are not significantly deviated from the original master models with the 

same name at <.01 using a T-test. Online testing indicated that none of the participants tested were inclined to 

select transcriptions made with ‘Deepspeech ASR (Panopto)’ with respect to either ‘LMT2’ or ‘Whisper Master’ 

models, as nobody from the test pool selected ‘Deepspeech’ transcriptions but, testing on a greater pool size 

may change results. The relationship between a neural-network parameter count, and the overall accuracy of 

such numbered parameters, could indicate a relationship that defines what parameter count would indicate a 

higher performance network with respect to the metrics calculated. 

 Figures 22 and 23 indicate a strong visual correlation between the performances of the ‘Small’ and ‘Base’ 

models, although each of these models have a parameter delta of 169,140,992. This delta indicates that the 

‘Small’ model is 2.33 times more parameter dense than the ‘Base’ model, although the overall performance delta 

between the two models is 1.92%. Although the statistical analysis showed no variance of the ‘Whisper’ models 

in comparison to the ‘LMT2’ models, the overall performance from the data provided shows an increase in 

accuracy across the key metrics calculated.  

Secondly, as mentioned in the discussion, the results outlined in Table 22 show a brief indication that the 

performance of the Deep Speech ASR model used within the test was not desired at all, with no participants on 

the online test outlining any value of accuracy to the aforementioned model, with no transcripts in the test 

relating to this model being chosen when compared to the Whisper model variants. Further information and 

data size is needed to conclude such findings, but the probability that the information gathered indicates any 

bias towards ASR is zero.  

Lastly, the performance of the models from a hardware standpoint can only be calculated with respect to the 

overall parameters used within the models themselves, with raw parameter values being shown in Table 2, the 

large delta between the whisper models and the Deepspeech models indicates a memory resource benefit, when 

compared with the other models in the table.   

6.1 Future Works – 

The overall accuracy of the models during the training phase is intrinsically limited to the hardware capabilities 

of the hardware capable of tuning and injecting data to the models. Further work with respect to the larger 

models provided by ‘Open AI – Whisper’ being ‘Medium, Large and Large-v2’ could indicate higher accuracy 

across the metrics. Secondly, collecting more data for the use of training would give the model more 

infrastructure change to encourage better reasoning. Lastly, the use of this software in the workplace of Panopto 

or any other model-based transcription platform could indicate more accuracy with respect to the metrics 

calculated.  

Lastly, the inclusion of other datapoints with the input reference data being tested could increase the overall 

accuracy of the models results, especially when secondary languages and accents are added into the datapoints. 

A model that is able to fit the gaps in data between these points will be able to determine if such variables effect 

the overall accuracy from the perspective of the reader.  
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APENDICIES – 

Following links provided below will show the corpus of code used in the paper. 

1. https://github.com/TtesseractT/LMT2-Tuning-Whisper/tree/main 

2. https://github.com/TtesseractT/LM-S2T 
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LMT2 – Tiny Training Code Master 
 
''' 
Model Trainer from HF Fine tune Whisper tiny Model 
 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
# Open the log file in append mode 
log_file = open("cmd_log_tiny-10.txt", "a") 
 
import os 
os.environ["HF_DATASETS_CACHE"] = "E:\huggingface" 
os.environ["TRANSFORMERS_CACHE"] = "E:\huggingface" 
 
# Loading checkpoints from hugging face 
from huggingface_hub import notebook_login 
from datasets import load_dataset, DatasetDict 
from transformers import WhisperFeatureExtractor 
from transformers import WhisperTokenizer 
from transformers import WhisperProcessor 
from transformers import WhisperForConditionalGeneration 
from transformers import Seq2SeqTrainingArguments 
from transformers import Seq2SeqTrainer 
from datasets import Audio 
from dataclasses import dataclass 
from typing import Any, Dict, List, Union 
 
import torch 
import evaluate 
import subprocess 
 
# Huggingface pylance token 
# Make sure you run cmd first and use 
 
#subprocess.run(['huggingface-cli', 'login']) 
 
# huggingface-cli login 
# login to hugging face and get a token 
# paste the token below 
# accept and sign the agreement for 13_0 dataset  
 
if __name__ == '__main__': 
 
    notebook_login() 
 
    common_voice = DatasetDict() 
    common_voice["train"] = load_dataset("mozilla-foundation/common_voice_13_0", "en", 
split="train+validation") 
    common_voice["test"] = load_dataset("mozilla-foundation/common_voice_13_0", "en", split="test") 
    # Print for debug 
    #print(common_voice) 
 
    common_voice = common_voice.remove_columns(["accent", "age", "client_id", "down_votes", 
"gender", "locale", "path", "segment", "up_votes"]) 
    # Print for debug 
    #print(common_voice) 
 
    # -------------------------- 
    # Feature Extraction Process - tiny 
    # -------------------------- 
 
    feature_extractor = WhisperFeatureExtractor.from_pretrained("openai/whisper-tiny") 
 
    # -------------------------- 
    # Load Whisper Tokenizer - tiny 
    # -------------------------- 
    tokenizer = WhisperTokenizer.from_pretrained("openai/whisper-tiny", language="en", 
task="transcribe") 
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    # -------------------------- 
    # Combine WhisperProcessor - tiny 
    # -------------------------- 
 
    processor = WhisperProcessor.from_pretrained("openai/whisper-tiny", language="en", 
task="transcribe") 
 
    # -------------------------- 
    # Prepare Data 
    # -------------------------- 
 
    print(common_voice["train"][0]) 
    common_voice = common_voice.cast_column("audio", Audio(sampling_rate=16000)) 
 
    # Re-loading the first audio sample in the Common Voice dataset will resample 
    print(common_voice["train"][0]) 
 
    def prepare_dataset(batch, feature_extractor, tokenizer): 
        # load and resample audio data from 48 to 16kHz 
        audio = batch["audio"] 
 
        # compute log-Mel input features from input audio array  
        batch["input_features"] = feature_extractor(audio["array"], 
sampling_rate=audio["sampling_rate"]).input_features[0] 
 
        # encode target text to label ids  
        batch["labels"] = tokenizer(batch["sentence"]).input_ids 
        return batch 
 
 
    common_voice = common_voice.map(prepare_dataset, fn_kwargs={'feature_extractor': 
feature_extractor, 'tokenizer': tokenizer}, remove_columns=common_voice.column_names["train"], 
num_proc=31) 
 
    # -------------------------- 
    # Define Data Collector 
    # -------------------------- 
 
    @dataclass 
    class DataCollatorSpeechSeq2SeqWithPadding: 
        processor: Any 
 
        def __call__(self, features: List[Dict[str, Union[List[int], torch.Tensor]]]) -> Dict[str, 
torch.Tensor]: 
            # split inputs and labels since they have to be of different lengths and need different 
padding methods 
            # first treat the audio inputs by simply returning torch tensors 
            input_features = [{"input_features": feature["input_features"]} for feature in features] 
            batch = self.processor.feature_extractor.pad(input_features, return_tensors="pt") 
 
            # get the tokenized label sequences 
            label_features = [{"input_ids": feature["labels"]} for feature in features] 
            # pad the labels to max length 
            labels_batch = self.processor.tokenizer.pad(label_features, return_tensors="pt") 
 
            # replace padding with -100 to ignore loss correctly 
            labels = labels_batch["input_ids"].masked_fill(labels_batch.attention_mask.ne(1), -100) 
 
 
 
 
 
            # if bos token is appended in previous tokenization step, 
            # cut bos token here as it's append later anyways 
            if (labels[:, 0] == self.processor.tokenizer.bos_token_id).all().cpu().item(): 
                labels = labels[:, 1:] 
 
            batch["labels"] = labels 
 
            return batch 
         
    data_collator = DataCollatorSpeechSeq2SeqWithPadding(processor=processor) 
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 # -------------------------- 
    # Evaluation Metrics 
    # -------------------------- 
 
    metric = evaluate.load("wer") 
 
    def compute_metrics(pred): 
        pred_ids = pred.predictions 
        label_ids = pred.label_ids 
 
        # replace -100 with the pad_token_id 
        label_ids[label_ids == -100] = tokenizer.pad_token_id 
 
        # we do not want to group tokens when computing the metrics 
        pred_str = tokenizer.batch_decode(pred_ids, skip_special_tokens=True) 
        label_str = tokenizer.batch_decode(label_ids, skip_special_tokens=True) 
 
        wer = 100 * metric.compute(predictions=pred_str, references=label_str) 
 
        return {"wer": wer} 
 
    # -------------------------- 
    # Load Pretrained Checkpoints 
    # -------------------------- 
 
    model = WhisperForConditionalGeneration.from_pretrained("openai/whisper-tiny") 
    model.config.forced_decoder_ids = None 
    model.config.suppress_tokens = [] 
 
    # -------------------------- 
    # Define the Training Config 
    # -------------------------- 
 
    training_args = Seq2SeqTrainingArguments( 
        output_dir="./LMT2-Tiny-10",  # change to a repo name of your choice 
        per_device_train_batch_size=32, 
        gradient_accumulation_steps=1,  # increase by 2x for every 2x decrease in batch size 
        learning_rate=1e-5, 
        warmup_steps=500, 
        max_steps=10000, 
        gradient_checkpointing=True, 
        fp16=True, 
        evaluation_strategy="steps", 
        per_device_eval_batch_size=8, 
        predict_with_generate=True, 
        generation_max_length=225, 
        save_steps=1000, 
        eval_steps=1000, 
        logging_steps=100, 
        report_to=["tensorboard"], 
        load_best_model_at_end=True, 
        metric_for_best_model="wer", 
        greater_is_better=False, 
        push_to_hub=True, 
    ) 
 
 
 
 
 
 
 
 
    trainer = Seq2SeqTrainer( 
        args=training_args, 
        model=model, 
        train_dataset=common_voice["train"], 
        eval_dataset=common_voice["test"], 
        data_collator=data_collator, 
        compute_metrics=compute_metrics, 
        tokenizer=processor.feature_extractor, 
    ) 
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    processor.save_pretrained(training_args.output_dir) 
 
    '''  
    ---------------------------------------------- 
    ##### Model Training Whisper tiny Model ##### 
    ---------------------------------------------- 
    ''' 
 
    trainer.train() 
 
    kwargs = { 
        "dataset_tags": "asr, speech-to-text, lmt2, tesseract3d, whisper-tiny, mozilla, common-
voice, en", 
        "dataset": "Common Voice 13.0", 
        "dataset": "Common Voice 13.0", 
        "dataset_args": "config: en, split: test", 
        "language": "en", 
        "model_name": "Tesseract3D/LMT2-tiny",   
        "finetuned_from": "openai/whisper-tiny", 
        "tasks": "automatic-speech-recognition", 
        "tags": "hf-asr-leaderboard", 
    } 
 
    trainer.push_to_hub(**kwargs) 
 
    print("TRAINING COMPLETE!") 
        # Close the log file 
log_file.close() 
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Metric Calculation Script 
 
''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import csv 
import random 
from nltk.metrics.distance import edit_distance 
from nltk.metrics import f_measure 
import os 
from tqdm import tqdm 
 
def calculate_wer(reference, hypothesis): 
    # Calculate the Word Error Rate 
    wer = edit_distance(reference.split(), hypothesis.split()) / len(reference.split()) 
    return wer 
 
def calculate_cer(reference, hypothesis): 
    # Calculate the Character Error Rate 
    cer = edit_distance(reference, hypothesis) / len(reference) 
    return cer 
 
def calculate_word_accuracy(reference, hypothesis): 
    # Calculate Word Accuracy 
    num_correct_words = sum(1 for ref_word, hyp_word in zip(reference.split(), hypothesis.split()) 
if ref_word == hyp_word) 
    word_accuracy = num_correct_words / len(reference.split()) 
    return word_accuracy 
 
def calculate_sentence_error_rate(reference, hypothesis): 
    # Calculate Sentence Error Rate 
    ref_set = set(reference.split()) 
    hyp_set = set(hypothesis.split()) 
    f1 = f_measure(ref_set, hyp_set) 
    if f1 is not None: 
        ser = 1 - f1  # Sentence Error Rate is 1 minus the F1 score 
    else: 
        ser = None 
    return ser 
 
def calculate_f1_score(reference, hypothesis): 
    # Calculate F1-Score 
    if not reference or not hypothesis: 
        return 0.0 
     
    ref_set = set(reference.split()) 
    hyp_set = set(hypothesis.split()) 
    f1 = f_measure(ref_set, hyp_set) 
    return f1 
 
def compare_transcriptions(validated_file, speech_recognition_file, num_samples=4000, num_tests=10): 
    # Read and parse TSV files 
    validated_data = {} 
    speech_recognition_data = {} 
 
    with open(validated_file, 'r', encoding='utf-8') as file: 
        reader = csv.reader(file, delimiter='\t') 
        next(reader)  # Skip the header row 
        for row in reader: 
            validated_data[row[0]] = row[1]  # Map file name to sentence 
 
    with open(speech_recognition_file, 'r', encoding='utf-8') as file: 
        reader = csv.reader(file, delimiter='\t') 
        next(reader)  # Skip the header row 
        for row in reader: 
            speech_recognition_data[row[0]] = row[1]  # Map file name to sentence 
 
 



100602673   

50 
7ME992-IES 

 
    total_results = [] 
    with tqdm(total=num_samples*num_tests, desc="Running Tests") as pbar: 
        for _ in range(num_tests): 
            results = [] 
            selected_references = random.sample(list(validated_data.keys()), num_samples) 
            for reference in selected_references: 
                validated_sentence = validated_data.get(reference, '') 
                hypothesis = speech_recognition_data.get(reference, '') 
 
                # Calculate metrics 
                wer = calculate_wer(validated_sentence, hypothesis) 
                cer = calculate_cer(validated_sentence, hypothesis) 
                word_accuracy = calculate_word_accuracy(validated_sentence, hypothesis) 
                ser = calculate_sentence_error_rate(validated_sentence, hypothesis) 
                f1_score = calculate_f1_score(validated_sentence, hypothesis) 
 
                # Append the metric values to results only if hypothesis is not None 
                if hypothesis is not None: 
                    results.append([wer, cer, ser, word_accuracy, f1_score]) 
                pbar.update(1) 
 
            total_results.extend(results) 
 
    # Calculate averages 
    metric_sums = [sum([value if value is not None else 0 for value in metric_values]) for 
metric_values in zip(*total_results)] 
    metric_counts = [len([value for value in metric_values if value is not None]) for metric_values 
in zip(*total_results)] 
    avg_results = [metric_sum / metric_count if metric_sum is not None and metric_count != 0 else 
None for metric_sum, metric_count in zip(metric_sums, metric_counts)] 
 
    return avg_results 
 
 
# Usage 
script_directory = os.path.dirname(os.path.abspath(__file__)) 
validated_tsv_file = os.path.join(script_directory, 'New-Val-Ref-LONGFORM-20k.tsv') 
speech_recognition_tsv_file = os.path.join(script_directory, 'transcriptions.tsv') 
 
# Run the test 10 times and calculate averages 
num_tests = 1 
num_samples = 5000 
avg_results = compare_transcriptions(validated_tsv_file, speech_recognition_tsv_file, 
num_samples=num_samples, num_tests=num_tests) 
 
# Save averages to a file in the same directory as the script 
results_file = os.path.join(script_directory, 'results.tsv') 
 
with open(results_file, 'w', newline='') as file: 
    writer = csv.writer(file, delimiter='\t') 
    writer.writerow(['Metric', 'Average']) 
    writer.writerow(['Word Error Rate (WER)', f'{avg_results[0] * 100:.2f}%']) 
    writer.writerow(['Character Error Rate (CER)', f'{avg_results[1] * 100:.2f}%']) 
    writer.writerow(['Sentence Error Rate (SER)', f'{avg_results[2] * 100:.2f}%']) 
    writer.writerow(['Word Accuracy', f'{avg_results[3] * 100:.2f}%']) 
    writer.writerow(['F1-Score', f'{avg_results[4]:.4f}']) 
 
print("Results saved successfully!") 
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LMT2 Model Testing Script 
 
''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
from transformers import pipeline 
import torch 
import argparse 
import librosa as lr 
import warnings 
import os 
import csv 
from tqdm import tqdm 
 
pipe = pipeline("automatic-speech-recognition", model='./Validation', device=torch.device("cuda:0" 
if torch.cuda.is_available() else "cpu")) 
tokenizer = pipe.tokenizer 
 
def transcribe(audio): 
    out = pipe(audio) 
    return out["text"] 
 
def LoadAudio(file_path): 
    x, sr = lr.load(file_path, sr=16000) 
    return x 
 
def split_audio(audio, duration): 
    sample_rate = 16000 
    audio_duration = len(audio) / sample_rate 
    num_segments = int(audio_duration / duration) 
    segments = [] 
    for i in range(num_segments): 
        start = int(i * duration * sample_rate) 
        end = int((i + 1) * duration * sample_rate) 
        segment = audio[start:end] 
        segments.append(segment) 
     
    # Check if there is remaining audio that doesn't fit into a full segment 
    remaining_audio = audio[num_segments * duration * sample_rate:] 
    if len(remaining_audio) > 0: 
        segments.append(remaining_audio) 
     
    return segments 
 
warnings.filterwarnings("ignore") 
folder_path = 'E:/TestEnvironment/cv-corpus-12.0-delta-2022-12-07-en/en/AudioFiles' 
output_folder = './Logs' 
segment_duration = 29  # Segment duration in seconds 
 
# Create the output folder if it doesn't exist 
os.makedirs(output_folder, exist_ok=True) 
 
# List all files in the input folder 
files = os.listdir(folder_path) 
 
# Prepare the output TSV file 
tsv_file = os.path.join(output_folder, 'transcriptions.tsv') 
with open(tsv_file, 'w', encoding='utf-8', newline='') as f: 
    writer = csv.writer(f, delimiter='\t') 
    writer.writerow(['File_Name', 'TS_Data'])  # Write the headers 
     
    # Process each file and write to the TSV file 
    for file in tqdm(files, desc="Transcribing files", unit="file"): 
        # Construct the full path of the audio file 
        audio_path = os.path.join(folder_path, file) 
         
 
 



100602673   

52 
7ME992-IES 

 
        # Load the audio 
        audio = LoadAudio(audio_path) 
 
        # Calculate the actual duration of the audio in seconds 
        audio_duration = len(audio) / 16000 
         
        # Split the audio into segments 
        audio_segments = split_audio(audio, segment_duration) 
         
        # Transcribe each audio segment 
        transcripts = [] 
        for i, segment in enumerate(audio_segments): 
            segment_transcript = transcribe(segment) 
            transcripts.append(segment_transcript) 
         
        # Merge the transcripts from all segments 
        full_transcript = " ".join(transcripts) 
         
        # Write the file name and transcription to the TSV file 
        writer.writerow([file, full_transcript]) 
 
print("Transcription completed. TSV file created.") 
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Model Testing and Automation Script 1 od 2 
 
''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import os 
import torch 
import subprocess 
 
if torch.cuda.is_available(): 
    device = torch.device("cuda") 
    print("CUDA device name:", torch.cuda.get_device_name(0))  # Prints the name of the first GPU 
    print("CUDA device count:", torch.cuda.device_count())  # Prints the number of available GPUs 
else: 
    print("CUDA is not available.") 
 
models_directory = "./Models" 
initial_directory = os.getcwd()  # Store the initial working directory 
 
# Get a list of subdirectories inside the Models directory 
subdirectories = next(os.walk(models_directory))[1] 
 
# Iterate through each subdirectory 
for subdirectory in subdirectories: 
    subdirectory_path = os.path.join(models_directory, subdirectory) 
     
    print(f"Entering subdirectory: {subdirectory}") 
     
    # Change to the subdirectory 
    os.chdir(subdirectory_path) 
     
    # Run the TEST.py script 
    os.system("python TRSC.py") 
     
    print(f"Finished running TRSC.py in subdirectory: {subdirectory}") 
     
    # Return to the initial working directory (Models) 
    os.chdir(initial_directory) 
 
print("All subdirectories processed.") 
print("Processing Metrics") 
 
models_folder = "./Models" 
os.chdir(models_folder) 
 
for root, dirs, files in os.walk(".", topdown=True): 
    for name in dirs: 
        subfolder_path = os.path.join(root, name) 
 
        logs_folder = os.path.join(subfolder_path, "Logs") 
        if not os.path.isdir(logs_folder): 
            continue 
 
        script_path = os.path.join(logs_folder, "Metric-calc.py") 
        subprocess.run(["python", script_path], shell=True) 
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Model Testing and Automation Script 2 of 2 
 
''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import os 
import deepspeech 
import scipy.io.wavfile as wav 
 
from tqdm import tqdm 
 
def read_wave_file(audio_file): 
    # Read the WAV file using scipy.io.wavfile 
    sample_rate, audio_data = wav.read(audio_file) 
 
    # Convert audio data to 16-bit PCM format 
    if audio_data.dtype != "int16": 
        audio_data = (audio_data * 32767).astype("int16") 
 
    return audio_data, sample_rate 
 
def transcribe_audio(audio_file_path, model_path, scorer_path, sample_rate): 
    # Read audio data from the file 
    audio_data, _ = read_wave_file(audio_file_path) 
 
    # Create a DeepSpeech model 
    model = deepspeech.Model(model_path) 
 
    # Perform the speech-to-text transcription 
    text = model.stt(audio_data) 
 
    return text 
 
def main(): 
    audio_folder = "E:/TestEnvironment/GenericASR_Testing/TestAudio"  # Replace with the path to 
your audio folder 
    model_path = "E:/TestEnvironment/GenericASR_Testing/deepspeech-0.9.3-models.pbmm"  # Replace 
with the path to the downloaded model 
    scorer_path = "E:/TestEnvironment/GenericASR_Testing/deepspeech-0.9.3-models.scorer"  # Replace 
with the path to the downloaded scorer 
 
    # Get a list of audio files in the folder 
    audio_files = [os.path.join(audio_folder, file) for file in os.listdir(audio_folder) if 
file.endswith(".wav")] 
 
    # Initialize the TQDM progress bar 
    pbar = tqdm(total=len(audio_files)) 
 
    # Transcribe each audio file and save the transcriptions to the .tsv file 
    with open("ASR_Out.tsv", "w", encoding="utf-8") as tsv_file: 
        tsv_file.write("path\tsentence\n") 
        for audio_file_path in audio_files: 
            file_name = os.path.basename(audio_file_path) 
            sample_rate = wav.read(audio_file_path)[0] 
            transcript = transcribe_audio(audio_file_path, model_path, scorer_path, sample_rate) 
            tsv_file.write(f"{file_name}\t{transcript}\n") 
            pbar.update(1) 
 
    pbar.close() 
 
if __name__ == "__main__": 
    main() 
 
# E:/TestEnvironment/GenericASR_Testing/TestAudio 
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''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import os 
import csv 
from tqdm import tqdm 
 
tsv_file = 'validated.tsv'  # Replace with the path to your TSV file 
tsv_file1 = 'new-val.tsv'  # Replace with the path to your new TSV file 
folder_path = 'clips'  # Replace with the path to the folder containing the files 
 
# Step 1: Read the TSV file and extract the 'path' column 
paths_to_keep = set() 
with open(tsv_file, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in reader: 
        path = row['path'] 
        paths_to_keep.add(path) 
 
# Step 2: Remove files in the folder that are not referenced in the TSV file 
removed_files = [] 
for filename in tqdm(os.listdir(folder_path), desc='Removing Files'): 
    file_path = os.path.join(folder_path, filename) 
    if os.path.isfile(file_path) and filename not in paths_to_keep: 
        os.remove(file_path) 
        removed_files.append(filename) 
 
# Step 3: Edit the TSV file to keep only the 'path' and 'sentence' columns 
tsv_output_file = 'new-val.tsv'  # Replace with the desired output file name 
with open(tsv_file, 'r', encoding='utf-8') as input_file, open(tsv_output_file, 'w', newline='', 
encoding='utf-8') as output_file: 
    reader = csv.reader(input_file, delimiter='\t') 
    writer = csv.writer(output_file, delimiter='\t') 
    header = next(reader) 
    path_index = header.index('path') 
    sentence_index = header.index('sentence') 
    writer.writerow(['path', 'sentence']) 
    for row in reader: 
        path = row[path_index] 
        sentence = row[sentence_index] 
        writer.writerow([path, sentence]) 
 
print("File parsing and filtering completed.") 
#print("Removed files:", removed_files) 
 
# Step 1: Read the TSV file and extract the 'path' column 
paths_in_tsv = set() 
with open(tsv_file1, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in reader: 
        path = row['path'] 
        paths_in_tsv.add(path) 
 
# Step 2: Get the list of files in the folder 
files_in_folder = os.listdir(folder_path) 
 
# Step 3: Check for files in the folder that are not referenced in the TSV file 
unreferenced_files = [filename for filename in files_in_folder if filename not in paths_in_tsv] 
 
# Step 4: Print the list of unreferenced files 
if unreferenced_files: 
    print("Unreferenced files found in the folder:") 
    for file in unreferenced_files: 
        print(file) 
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else: 
    print("No unreferenced files found in the folder.") 
     
''' 
# Step 1: Read the TSV file and extract the 'path' column 
paths_to_keep = set() 
with open(tsv_file1, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in reader: 
        path = row['path'] 
        sentence = row['sentence'] 
        if any(char in sentence for char in "',‘\\?'\""): 
            file_path = os.path.join(folder_path, path) 
            if os.path.isfile(file_path): 
                os.remove(file_path) 
        else: 
            paths_to_keep.add(path) 
 
# Step 2: Edit the TSV file to keep only the 'path' and 'sentence' columns and remove files with 
invalid sentences 
tsv_output_file = 'new-validated.tsv'  # Replace with the desired output file name 
with open(tsv_file1, 'r', encoding='utf-8') as input_file, open(tsv_output_file, 'w', newline='', 
encoding='utf-8') as output_file: 
    reader = csv.reader(input_file, delimiter='\t') 
    writer = csv.writer(output_file, delimiter='\t') 
    header = next(reader) 
    path_index = header.index('path') 
    sentence_index = header.index('sentence') 
    writer.writerow(['path', 'sentence']) 
    for row in reader: 
        path = row[path_index] 
        sentence = row[sentence_index] 
        if path in paths_to_keep: 
            writer.writerow([path, sentence]) 
 
print("File parsing and filtering completed.") 
''' 
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''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import os 
import csv 
from tqdm import tqdm 
 
tsv_file = 'validated.tsv'  # Replace with the path to your TSV file 
tsv_file1 = 'new-val.tsv'  # Replace with the path to your new TSV file 
folder_path = 'clips'  # Replace with the path to the folder containing the files 
 
# Step 1: Read the TSV file and extract the 'path' column 
paths_to_keep = set() 
unique_sentences = set()  # Track unique sentences 
with open(tsv_file1, 'r', encoding='utf-8') as file: 
    reader = csv.DictReader(file, delimiter='\t') 
    for row in tqdm(reader, desc="Processing rows", unit="row"): 
        path = row['path'] 
        sentence = row['sentence'] 
        if ( 
            any(char in sentence for char in "',!-;£$%^&*()|~@→‘\\?'\"") 
            or len(sentence) < 5  # Check if the sentence is less than 5 characters long 
            or len(sentence) > 15 # Check if the sentence is more than 15 characters long 
            or sentence.count('.') > 2  # Check if the sentence has more than 2 full stops 
            or sum(1 for c in sentence if c.isupper() and c.isalpha()) > 1  # Check if the sentence 
has more than 1 capital letter 
            or sentence in unique_sentences  # Check if the sentence has already been encountered 
        ): 
            file_path = os.path.join(folder_path, path) 
            if os.path.isfile(file_path): 
                os.remove(file_path) 
        else: 
            paths_to_keep.add(path) 
            unique_sentences.add(sentence) 
 
# Step 2: Edit the TSV file to keep only the 'path' and 'sentence' columns and remove files with 
invalid sentences 
tsv_output_file = 'New-Val-Ref-SHORTFORM.tsv'  # Replace with the desired output file name 
with open(tsv_file1, 'r', encoding='utf-8') as input_file, open(tsv_output_file, 'w', newline='', 
encoding='utf-8') as output_file: 
    reader = csv.reader(input_file, delimiter='\t') 
    writer = csv.writer(output_file, delimiter='\t') 
    header = next(reader) 
    path_index = header.index('path') 
    sentence_index = header.index('sentence') 
    writer.writerow(['path', 'sentence']) 
    for row in tqdm(reader, desc="Writing rows", unit="row"): 
        path = row[path_index] 
        sentence = row[sentence_index] 
        if path in paths_to_keep: 
            writer.writerow([path, sentence]) 
 
print("File parsing and filtering completed.") 
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''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import random 
import csv 
import tqdm 
 
tsv_file = 'new-val-ref-15-30.tsv'  # Replace with the path to your TSV file 
output_file = 'new-val-ref-15-30-5k.tsv'  # Replace with the desired output file name 
 
# Step 1: Read the TSV file and extract all the lines 
lines = [] 
with open(tsv_file, 'r', encoding='utf-8') as file: 
    reader = csv.reader(file, delimiter='\t') 
    header = next(reader) 
    lines = list(reader) 
 
# Step 2: Randomly select 5,000 lines with tqdm progress monitoring 
selected_lines = random.sample(lines, 5000) 
 
# Step 3: Save the selected lines in the new TSV file with tqdm progress monitoring 
with open(output_file, 'w', newline='', encoding='utf-8') as file: 
    writer = csv.writer(file, delimiter='\t') 
    writer.writerow(header) 
    for line in tqdm.tqdm(selected_lines, desc="Saving lines", unit="line"): 
        writer.writerow(line) 
 
print("Random selection and saving completed.") 
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Huggingface Dataset Downloader (External Downloader) 
 
''' 
Author: Sabian Hibbs 
University of Derby 
United Kingdom, England 
 
Licence MIT 
''' 
 
import os 
from datasets import load_dataset 
 
# Get the directory of the current script 
script_dir = os.path.dirname(os.path.realpath(__file__)) 
 
# Specify the name of the dataset 
dataset_name = 'mozilla-foundation/common_voice_13_0' 
 
# Replace 'your-token' with the token you got from HuggingFace's website 
dataset = load_dataset(dataset_name, 'en', data_dir=script_dir, use_auth_token='HuggingFace_Token') 
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END OF PAPER 


