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Abstract—The proliferation of synthetically generated
content presents a formidable challenge within contemporary
machine learning paradigms, particularly in the domain of ar-
tificially generated audio. This white paper describes EUCLID
(Enhanced Utility for Classification and Identification of Data),
an innovative multi-head binary classification architecture that
distinguishes between authentic and synthetic data through
an ensemble of specialised neural network substructures. The
proposed framework integrates sophisticated probabilistic
formulations, a novel asymmetric output aggregation method,
and a meticulously engineered data processing pipeline.
This manuscript explains the theoretical foundations of
the EUCLID model, using mathematical detail that clearly
explains each computational module, and concludes with
performance projections and future research directions.

I. INTRODUCTION

Detecting synthetic data, especially artificial audio, is
a significant challenge in modern machine learning. This
manuscript introduces a multi-head binary classification
architecture designed to discriminate between authentic
and synthetically generated data specimens. The frame-
work integrates multiple neural network substructures
(“heads”), whose outputs undergo a specialised aggrega-
tion protocol engineered to enhance detection sensitivity.
This sophisticated approach incorporates a rigorous prob-
abilistic formalism, an ensemble classification methodol-
ogy with a novel asymmetric output-integration strategy,
and a comprehensive data transformation pipeline. The
system’s modular design, encompassing all operational
stages from preprocessing to inference, facilitates adapt-
ability and renders it suitable for inclusion in technical
documentation or project repositories.

The organisation of this discourse proceeds as follows:
We commence with a formal mathematical exposition of
the classification model, elucidating the probabilistic com-
putation framework, loss function formulation, decision
boundary determination methodology, and the theoretical
justification for the distinctive averaging of “authentic”
logits across multiple neural substructures. Subsequently,
we provide exhaustive explications of each computational
module within the implementation pipeline, articulating

how the constituent scripts collectively form an integrated
detection system:

• file_renamer.py – ensures consistent, unique
filenames for audio data.

• audio_converter.py – normalises audio format
and sampling.

• audio_augment.py – generates augmented audio
examples to expand the training set.

• audio_segmenter.py – chops audio files into
fixed-length segments.

• dataset_manager.py – splits data into training
and testing sets by class.

• file_manager.py – checks and fixes any overlap
between training and testing sets (to prevent data
leakage).

• submodel_trainer.py – trains individual classi-
fication sub-models (the “heads”).

• model_merger.py – merges multiple trained sub-
models into a unified multi-head ensemble model.

• inference_runner.py – runs the merged model
on new data for inference, producing detection
results.

Finally, we examine the performance characteristics of
our multi-head classification architecture. The analysis
includes projected accuracy metrics and computational
efficiency assessments for the system’s ensemble-based
design and modular processing pipeline. We highlight
how the combination of specialised detection heads
contributes to overall system robustness and sensitivity
in distinguishing between authentic and synthetic audio
specimens.

II. MULTI-HEAD CLASSIFICATION MODEL:
MATHEMATICAL FRAMEWORK

The core of the system is a binary classifier imple-
mented as an ensemble of neural network sub-models
(multiple “heads”). Each sub-model is a deep neural
network that independently attempts to classify an
audio sample as Real (authentic) or Synthetic (fake).
By combining several sub-models, the system aims to

mailto:sabian@uhmbrella.io
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improve robustness and detection accuracy through
ensemble learning. In this section, we detail the model
architecture and derive its probability estimates, loss
function formulation, decision strategy, and explain the
reasoning for the unique averaging of real logits.

A. Model Architecture and Probability Computation

Each sub-model instantiates a convolutional neural
architecture that operates on spectro-temporal repre-
sentations of acoustic signals. In our implementation,
individual sub-models utilise a pretrained convolutional
backbone (specifically, a residual network architecture
such as ResNet-18) for extracting hierarchical feature
representations from input spectrograms, followed by a
domain-specific classification module that projects these
representations onto a binary decision space. Formally,
given an input representation x (a log-mel spectrogram
derived from an audio segment), each sub-model fi (pa-
rameterised by θi) computes a two-dimensional projection
into logit space:

zi = fi(x; θi) = (zi,real, zi,synthetic), (1)

where zi,real is the logit (unnormalised score) that the
sample is real, and zi,synthetic is the logit that the sample
is synthetic. (Some implementations may swap the order;
what matters is consistent interpretation of each index.)

To convert logits into class probabilities for a given sub-
model, we apply the softmax function. For sub-model
i, the predicted probability of the sample being real or
synthetic is:

pi,real =
ezi,real

ezi,real + ezi,synthetic
, (2)

pi,synthetic =
ezi,synthetic

ezi,real + ezi,synthetic
, (3)

which ensures pi,real + pi,synthetic = 1. This is a special case
of the softmax for C = 2 classes (binary classification),
where we normalise the two logits to obtain a valid
probability distribution. In general, for a classifier with C
classes and logits z = (z1, z2, . . . , zC), the softmax defines

pi =
ezi

∑C
j=1 ezj

. (4)

Here C = 2, and it simplifies as above.
Our system combines N such sub-models. We construct

a multi-head ensemble model F(x) that aggregates the
outputs of all sub-models. The ensemble’s forward pass
collates the logits from each sub-model:

• For each sub-model i = 1, . . . , N, compute zi =
(zi,real, zi,synthetic).

• Separate the real and synthetic components: collect
all zi,real into a set {z1,real, . . . , zN,real} and all syn-
thetic logits {z1,synthetic, . . . , zN,synthetic}.

• The ensemble real logit is defined as the average of
all real logits:

zensemble, real =
1
N

N

∑
i=1

zi,real. (5)

• All the synthetic logits are kept separate (each sub-
model contributes its own synthetic logit). Thus, the
ensemble output is a vector of length N + 1:

F(x) = (z1,synthetic, z2,synthetic, . . . ,

zN,synthetic, zensemble, real). (6)

This ensemble output configuration effectively gen-
erates a vector comprising N distinct detection scores
corresponding to synthetic characteristics (with each score
derived from an individual classification head) and a
singular consolidated authenticity score.

For probabilistic interpretation of the ensemble’s output
representation, one could theoretically employ softmax
normalisation across these N + 1 components. Such an
approach would conceptualise the classification paradigm
as an (N + 1)-class taxonomic problem, wherein each
synthetic detection head constitutes an independent cate-
gory alongside a unified authentic class. However, given
that our fundamental classification objective remains
dichotomous (distinguishing authentic from synthetic
specimens), we typically operationalise the ensemble
output through comparative analysis between the max-
imal synthetic detection score and the consolidated
authenticity score (elaborated in the Decision Thresholds
subsection). When probabilistic quantification becomes
necessary, one might formulate the ensemble’s assessment
of a specimen’s authenticity as:

pensemble, real =
ezensemble, real

ezensemble, real + ∑N
i=1 ezi,synthetic

, (7)

pensemble, synthetic = 1 − pensemble, real. (8)

In practice, the ensemble’s decision rule (described
later) can circumvent explicitly computing this combined
probability by using logits directly.

B. Loss Function for Training
Each constituent neural substructure undergoes train-

ing within a dichotomous classification paradigm em-
ploying the cross-entropy loss functional — a canonical
optimisation criterion for taxonomic machine learning
architectures. Throughout the training regimen, we des-
ignate “Authentic” as categorical designation 0 and
“Synthetic” as categorical designation 1 (or the inverse,
contingent upon consistent implementation). The training
corpus comprises input representations x accompanied
by veridical annotations y ∈ {0, 1} (where 0 signifies
authentic and 1 denotes synthetic).

For an arbitrary neural substructure yielding output
logits z = (zreal, zsynthetic) with corresponding proba-
bilistic distributions p = (preal, psynthetic) as previously

2
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formalised, and given a one-hot encoded ground truth
vector y = (yreal, ysynthetic) (manifesting as (1, 0) for
authentic specimens or (0, 1) for synthetic specimens),
the cross-entropy loss functional is expressed as:

L = −
[
yreal log(preal) + ysynthetic log(psynthetic)

]
. (9)

This formula is a special case of the general cross-entropy
for C classes:

L(θ) = −
C

∑
i=1

yi log pi . (10)

Here C = 2, and effectively if the sample is authentic
(so yreal = 1, ysynthetic = 0), the loss is − log(preal);
if the sample is synthetic, the loss is − log(psynthetic).
Minimising this loss trains each sub-model to output a
high probability for the correct class.

It is important to note that the constituent neural
substructures undergo disjoint optimisation regimes
(utilising identical training corpora) via the aforemen-
tioned loss functional. Rather than pursuing simultaneous
optimisation of the integrated multi-head architecture,
we independently parameterise N distinct classificatory
frameworks (potentially implementing heterogeneous
stochastic initialisations or architectural variations). This
optimisation protocol employs contemporary gradient-
based methodologies — specifically, in our implementa-
tion, the AdamW algorithm (an extension of adaptive
moment estimation incorporating decoupled weight de-
cay regularisation). This optimiser facilitates parameter
updates θ through iterative computation of loss gradients,
thereby accelerating convergence trajectories within the
high-dimensional parameter space. Such methodological
decisions ensure superior generalisation characteristics
while mitigating overfitting phenomena through appro-
priate regularisation constraints.

Upon completion of this distributed training paradigm,
we persist each substructure’s parametric configuration.
The subsequent model integration phase (elaborated in
forthcoming sections) retrieves these parameterisations
and instantiates them within a unified architectural
framework. It is worth noting that this integration
procedure eschews additional optimisation or fine-tuning
of the composite ensemble; the constituent substructures
retain their independently optimised states. The ensem-
ble framework exclusively provides a novel forward
propagation mechanism that synthesises their respective
inferential outputs.

C. Decision Thresholds and Inference Strategy
During inference with a novel input specimen, the

amalgamated multi-head architecture F(x) generates an
asymmetric output configuration comprising N synthetic
class logits (each derived from a distinct classification
substructure) adjoining a singular consolidated authen-
ticity logit (computed as the arithmetic mean across
all substructures). The determination of the categorical

designation — authentic versus synthetic — necessitates a
decision-theoretic framework that establishes appropriate
classification boundaries within this N + 1-dimensional
output space. Our methodology employs a decisional
criterion based on unanimity for authentic attribution: a
specimen receives an authentic designation exclusively
when the consolidated authenticity logit exceeds all
individual synthetic logits across the entire ensemble.
In other words:

• Predict “Real” if

Ravg > max{S1, S2, . . . , SN}, (11)

where Si = zi,synthetic and Ravg = zensemble, real =
1
N ∑N

i=1 zi,real.
• Otherwise, predict “Synthetic” (the sample is consid-

ered fake because at least one head’s synthetic score
exceeds the consolidated real score).

This decision rule can be viewed as a threshold
comparison operation. Essentially, the procedure involves
comparing the maximum synthetic confidence score
with the averaged authentic confidence measure. If
any individual substructure produces a synthetic logit
exceeding the consolidated authentic logit, the ensemble
defaults to a synthetic classification. Conversely, when
all synthetic logits are below the authentic average, this
indicates consensus among all substructures regarding the
sample’s authenticity, thereby warranting a classification
of “Real.” In practice, one may implement this by
applying an argmax operation over the N + 1 output
vector of F(x); if the argmax corresponds to the last
component (the averaged authentic logit), the prediction
is “Real,” otherwise it is “Synthetic.” This strategy is
more stringent than using a conventional 0.5 probability
threshold, thereby minimising the risk of false negatives.

D. Rationale for Averaging the Real Logits (Ensemble Strat-
egy)

A distinctive feature of our multi-head architecture
is the deliberate asymmetric aggregation strategy: we
compute the arithmetic mean of the authenticity logits
across all classification substructures while preserving
the individual synthetic logits in their original form. This
design instantiates a framework in which unanimity
is required for a sample to be deemed authentic. The
theoretical rationale is as follows:

In the context of detecting artificially generated data,
false negative classifications (i.e. failing to detect synthetic
specimens) typically incur substantially higher costs than
false positives. By averaging the authenticity logits, we
effectively mandate that all substructures provide strong
authentic signals; a single substructure with a low authen-
tic logit (indicating uncertainty) diminishes the overall
average. Conversely, by retaining individual synthetic
logits, we ensure that a strong synthetic indicator from
any one substructure is not diluted by the averaging
process.

3



M
ul

ti
-H

ea
d

Bi
na

ry
C

la
ss

ifi
ca

ti
on

Sy
st

em
fo

r
Sy

nt
he

ti
c

D
at

a
D

et
ec

ti
on

an
d

A
ud

io
A

ut
he

nt
ic

at
io

n
Sy

st
em

s
•

U
hm

br
el

la
Lt

d.
•

M
ar

ch
23

,2
02

5•
S.

H
ib

bs

From a probabilistic standpoint, averaging the authen-
tic logits approximates the multiplication of independent
authentic probabilities across the ensemble. Assuming
stochastic independence between the authenticity assess-
ments pi,real of each sub-model, the joint probability of
unanimous authentic classification is given by:

N

∏
i=1

pi,real. (12)

Taking the logarithm, this product becomes a sum:

log
N

∏
i=1

pi,real =
N

∑
i=1

log pi,real. (13)

III. RESNET BACKBONE ARCHITECTURE

In our implementation, each sub-model utilises a Resid-
ual Network (ResNet) as its backbone feature extractor.
ResNet architectures are widely recognised for their effec-
tive use of residual connections (skip connections) which
allow very deep networks to be trained by mitigating
the vanishing gradient problem.

A. ResNet Structure and Functionality
The ResNet architecture’s key innovation is the intro-

duction of identity shortcut connections that skip one
or more layers, allowing gradients to flow through the
network more effectively during backpropagation. For
any given layer with input x, instead of learning a direct
mapping H(x), the network learns the residual function
F(x) = H(x) − x, making the actual transformation
H(x) = F(x) + x. This reformulation makes optimization
easier, particularly in deeper networks.

The general structure of ResNet includes:
• An initial convolutional layer with a large kernel

(7×7) and stride of 2
• A max pooling layer with stride of 2
• Multiple residual blocks, each containing several

convolutional layers with batch normalization and
ReLU activations

• A global average pooling layer
• A fully connected layer for final classification
In our synthetic audio detection system, we employ

several variants of ResNet architectures depending on
the computational resources available and the required
detection accuracy:

• ResNet-18: Our lightweight option, containing 18
layers and approximately 11.7 million parameters.
This variant offers the fastest inference time while
still maintaining reasonable detection accuracy. It is
particularly useful for deployment on edge devices
or when computational resources are limited.

• ResNet-34: A moderate-depth network with 34 layers
that provides a balance between computational
efficiency and feature extraction capability.

• ResNet-50: Our standard configuration for most
deployments, offering significantly better feature

extraction than the smaller variants through the
use of bottleneck blocks, while still maintaining
reasonable computational requirements.

• ResNet-101/152: These deeper variants are employed
for high-stakes applications where detection accuracy
is paramount, regardless of computational cost.

For a detailed visual overview of the ResNet-18
architecture, which consists of 18 layers including 17
convolutional layers, a fully connected layer, and a
softmax classification layer, please refer to the diagram
in [1].

B. ResNet Adaptation for Audio Spectrograms
To adapt ResNet (originally designed for RGB images)

to audio processing, we convert audio segments to mel-
spectrograms and transform them into compatible inputs:

• Raw audio segments are transformed into log-mel
spectrograms using short-time Fourier transform
with a window size of 1024 samples and hop length
of 512 samples.

• Spectrograms are resized to 512×512 dimensions and
normalized to [0,1] range.

• For ResNet compatibility, spectrograms are replicated
across three channels (simulating RGB input) or, alter-
natively, we use different time-frequency representa-
tions across channels (e.g., mel-spectrogram, MFCC,
and chromagram) for multi-view representation.

During training, we leverage transfer learning by
initializing the ResNet backbone with weights pre-trained
on ImageNet. We then fine-tune the entire network using
our audio spectrogram data, with deeper layers receiv-
ing higher learning rates than the foundational layers
that extract general features. This approach significantly
accelerates convergence and improves generalization
compared to training from random initialization.

The final fully connected layer of each ResNet model
is replaced with a custom classification head that outputs
logits for the binary classification task (real vs. synthetic
audio). The diverse architectural differences across our
ensemble of ResNet variants contributes to the robustness
of our detection system, as each model focuses on
different aspects of the input data.

Furthermore, an annotated explanation of the ResNet-
50 architecture—with comprehensive diagrams elucidat-
ing the function of each component—is available in
[3]. These external resources provide clear visualisations
and in-depth analyses that complement the theoretical
description presented in this paper.

IV. SYSTEM COMPONENTS AND DATA PIPELINE

The multi-head classifier is part of a broader compu-
tational framework comprising meticulously engineered
data transformation and parameter optimisation modules.
This architectural ecosystem represents the culmination
of a sophisticated processing pipeline in which each
constituent script performs a clearly delineated function.

4
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Fig. 1. ResNet-18 architecture showing the residual connections that enable training of deep networks. This architecture serves as the backbone
feature extractor for each sub-model in our multi-head classification system. (Reference: [1])

The following explication describes the functional archi-
tecture of each module and elucidates their integrative
dynamics within the overall synthetic data detection
framework. Although the stages are presented in a
sequential order, practical implementations may allow
for parallel execution in certain cases.

The pipeline commences with a heterogeneous corpus
of acoustic data acquired from diverse sources (including
both authentic and synthetically generated specimens).
These audio files frequently have arbitrary nomenclature,
potentially containing embedded metadata or inconsistent
naming patterns. The File Renamer module establishes a
standard naming scheme to ensure uniqueness and data
anonymisation.

A. File Renamer (file_renamer.py)
Functional Architecture: The module implements a

cryptographic transformation by computing a SHA-256
hash of each audio file’s binary content, then employing
a truncated prefix (typically the first 16 hexadecimal
characters) as the canonical filename, while preserving
the original file extension (e.g. .wav, .mp3). When run
in recursive mode, the algorithm traverses subdirectories
to apply this transformation comprehensively.

Theoretical Justification: Content-based cryptographic
hashing prevents naming collisions (identical audio files
yield identical hashes) and eliminates potentially sensi-
tive metadata. It also simplifies downstream processing
by establishing a uniform naming framework, thereby
facilitating deduplication and overlap detection.

Operational Integration: This module is typically
applied to the repositories of authentic and synthetic
audio, either separately or combined, prior to further
processing. Transformation logs mapping original to
new filenames are generated to preserve provenance
traceability.

B. Audio Converter (audio_converter.py)
Acoustic data may be encoded in various formats (e.g.

MP3, WAV, FLAC, AAC) and have differing sampling
frequencies and channel architectures.

Functional Architecture:
• Utilises the FFmpeg multimedia framework (invoked

via asynchronous subprocesses) to convert each

audio file to a standard configuration: WAV-encoded
linear pulse-code modulation with 16-bit quantisa-
tion, a 32 kilohertz sampling rate, and monaural
channels.

• Traverses a specified directory to process eligible
files and outputs normalised files to a designated
repository.

• Achieves computational efficiency through parallel
processing and dynamic progress visualisation.

Theoretical Justification: Standardisation of spectro-
temporal representations is critical for consistent feature
extraction. Neural network architectures require inputs
with uniform dimensions and sampling frequencies; het-
erogeneity in these parameters could introduce systematic
artefacts that impair model performance. Adopting a 32
kHz sampling rate with monaural configuration strikes an
optimal balance between preserving important frequency
components and reducing computational load, while
using lossless WAV encoding avoids the pitfalls of codec-
specific compression artefacts.

Operational Integration: Typically executed after file
renaming, the audio converter processes directories
(e.g. data_raw/real/ and data_raw/fake/)
and outputs converted files to corresponding
folders (e.g. data_converted/real/ and
data_converted/fake/), forming the foundation for
subsequent augmentation and segmentation.

C. Audio Augmenter (audio_augment.py)

Data augmentation is essential for enhancing the
robustness of deep learning models.

Functionality:

• For each input audio file, the script creates 10 aug-
mented copies in addition to the original, yielding
11 files per input.

• Augmentation techniques include:
– Time Stretching: randomly speeding up or slow-

ing down the audio by a factor between 0.5×
and 1.5×.

– Pitch Shifting: randomly shifting the pitch up or
down by a few semitones (e.g. ±2 semitones)
without altering speed.

5
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– Dynamic Range Compression: randomly applying
varying degrees of compression to alter ampli-
tude dynamics.

– Additive White Noise: injecting a small amount
of white noise at a random volume to simulate
background hiss.

– Phase Shift: introducing a phase offset in the
audio waveform.

– Filtering: applying a random audio filter (e.g.
band-pass, high-pass, low-pass, or band-stop) to
modify frequency content.

– Time Domain Shift: shifting the audio slightly in
time or applying subtle time warping.

– No Augmentation (Original): including the unal-
tered original for reference.

• Filenames of augmented files incorporate the original
hash plus an identifier of the augmentation and its
parameter value.

• The script leverages all available CPU cores via
parallel processing and logs progress using a TQDM
progress bar.

Rationale: Augmentation substantially increases the
effective size of the training dataset and introduces
crucial variations that prevent overfitting. Techniques
such as time stretching and pitch shifting encourage
invariance to differences in speaking rate and vocal
pitch. The addition of noise and application of filters
simulate various recording environments. These factors
are especially important in synthetic data detection, where
artefacts may become more or less prominent under
different conditions.

Operational Integration: Typically, the
audio augmenter is run on the converted
audio files (e.g. from data_converted/real/
and data_converted/fake/), outputting to
directories such as data_augmented/real/ and
data_augmented/fake/. A CSV log summarising
applied augmentations is often generated.

D. Audio Segmenter (audio_segmenter.py)

Neural networks often require inputs of fixed duration;
in audio processing, this means fixed-length clips.

Functionality:

• Splits each audio file into consecutive segments of a
fixed duration (typically 4 seconds).

• Uses FFmpeg to perform the slicing; if a file is shorter
than the specified duration, padding may be applied.

• Each segment is saved with a filename that
appends a suffix such as _Segment_001.wav,
_Segment_002.wav, etc.

• Processes files concurrently using a thread pool and
displays a progress bar.

Rationale: Fixed-length segments are required because
the model (in submodel_trainer.py) processes inputs

as spectrograms of a set size. Segmenting longer record-
ings increases the data quantity and prevents excessively
long recordings from biasing the training process.

Operational Integration: Typically applied after aug-
mentation, the segmenter processes directories (e.g.
data_augmented/real/) and outputs to correspond-
ing segment folders (e.g. data_segmented/real/).

E. Dataset Manager (dataset_manager.py)

After segmentation, the next step is to split the data
into training and testing sets.

Functionality:
• Reads an input directory containing subfolders for

each class (e.g. class0 for real, class1 for syn-
thetic).

• Randomly splits the files for each class into a training
set and a test set (e.g. 80% training, 20% test).

• Moves files into a new directory structure with
separate train/ and test/ subdirectories, each
containing class-specific folders.

Rationale: Proper evaluation requires that the training
and test sets are distinct to measure the model’s general-
isation. Maintaining class balance and reproducibility in
the split is essential.

Operational Integration: Run this script after
segmentation. The resulting folder structure (e.g.
dataset_split/train/class0/*.wav) is used by
submodel_trainer.py for model training.

F. File Manager (Overlap Checker) (file_manager.py)

It is crucial to ensure that no segments from the same
original audio file appear in both the training and test
sets, as this could lead to data leakage.

Functionality:
• Examines the filenames of WAV files in correspond-

ing class folders of the train and test sets.
• Defines a “group key” as the portion of the filename

before the first underscore.
• Identifies overlapping groups; in report mode, it

prints a summary; in fix mode (using a -fix flag),
it moves files from the smaller subset to the larger
one.

Rationale: Preventing fragments of the same original
sample from being in both sets is critical to avoid overly
optimistic performance estimates.

Operational Integration: Run this script after the
dataset manager to clean up any overlaps.

G. Submodel Trainer (submodel_trainer.py)

This is the core training script for the neural network
sub-models (the individual heads) in the ensemble.

Functionality:
• Data Loading: Utilises a custom
SpectrogramDataset that reads segmented
WAV files and converts each to a mel-spectrogram

6
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using torchaudio transforms. The spectrograms
are resized (e.g. to 512×512) and normalised, then
converted to 3-channel images suitable for a CNN
backbone.

• Model Architecture: Employs a pre-trained ResNet
(e.g. ResNet-18 from timm) as the feature extractor,
removes the final classification layer, and adds a new
fully connected head that outputs 2 logits (for Real
and Synthetic).

• Training Loop: Trains the network using cross-
entropy loss and the AdamW optimiser, with op-
tional gradient clipping. Supports multi-GPU train-
ing, TensorBoard logging, and periodic evaluation
on a validation set.

• Output: Saves the final model checkpoint (state_dict)
for each sub-model.

Rationale: Training each sub-model independently
(potentially with different random seeds or slight ar-
chitectural variations) yields diverse decision boundaries,
which when ensembled, help cancel out individual errors.
The use of heavy augmentation and selective fine-tuning
ensures robustness and faster convergence.

Operational Integration: Run this script multiple times
to obtain several trained sub-model checkpoints.

H. Model Merger (model_merger.py)

After obtaining several trained sub-models, the Model
Merger script combines them into a unified multi-head
ensemble model.

Functionality:
• Reads sub-model checkpoints from a specified folder

and loads each into a BinaryClassifier instance.
• Constructs a ModularMultiHeadClassifier that

stores these sub-models in a PyTorch ModuleList.
• During the forward pass, for each input x, the

merged model computes each sub-model’s output,
concatenates all synthetic logits, and averages all real
logits to produce an output vector of length N + 1.

• Saves the merged model checkpoint along with
metadata (e.g. class names).

Rationale: Merging sub-models into one model sim-
plifies deployment by encapsulating all components in a
single module. The approach of averaging real logits and
preserving synthetic logits implements the strict decision
rule for authentic classification.

Operational Integration: Run this script once all sub-
model checkpoints are available. The resulting merged
model is used for inference.

I. Inference Runner (inference_runner.py)

This script applies the merged multi-head model to
new audio data for synthetic detection.

Functionality:
• Loads the merged model and any associated meta-

data.

• Preprocesses input audio (conversion, segmentation,
mel-spectrogram transformation) using the same
pipeline as for training.

• For each audio segment, obtains the model’s output
vector, applies the decision rule (comparing synthetic
logits to the averaged real logit), and determines the
predicted label.

• For audio files that were segmented, aggregates
the per-segment predictions (e.g. by averaging or
majority vote) to yield an overall decision.

• Outputs the final result in a structured format (e.g.
JSON) containing the filename, segmented predic-
tions (with start and end times), and percentage
breakdowns of class probabilities.

Rationale: The inference runner encapsulates the full
prediction pipeline for new data, ensuring consistency
with the training preprocessing. The clear output format
facilitates integration with downstream systems or human
review.

Operational Integration: Use this script by specifying
the merged model checkpoint and the input file or
directory to run detection on new audio data.

V. EXPECTED PERFORMANCE AND EFFICIENCY

Based on the design and modular nature of our system,
we anticipate the following performance characteristics:

• High Detection Accuracy: Each sub-model, trained
as a binary classifier, is expected to achieve high
accuracy (95–99%) on its respective task. When
merged into an ensemble, overall accuracy should
reach into the high 90s.

• Robustness: Extensive augmentation and the ensem-
ble strategy enhance generalisation, reducing both
false negatives (missed fakes) and false positives
(misclassifying real audio as fake).

• Scalability: The modular design allows for easy
expansion by training additional sub-models for new
synthetic classes without retraining existing ones.

• Efficiency: While running multiple sub-models in-
curs higher computational cost than a single model,
the merged model is optimised to run all sub-models
in a single forward pass on a GPU. Offline prepro-
cessing (conversion, augmentation, segmentation) is
parallelised to handle large datasets efficiently.

• Real-Time Feasibility: With proper batching and
GPU acceleration, the system is capable of near-real-
time inference on 4-second audio segments, making
it suitable for applications requiring timely detection.

While our system supports various ResNet architec-
tures as the backbone feature extractor, resource con-
siderations may influence the specific choice of model.
Table I illustrates the parameter count, layer depth, model
size, and approximate GPU memory requirements for
different ResNet variants. The scalability of our approach
allows practitioners to select an appropriate backbone
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Fig. 2. Architecture of the multi-head ensemble model. Each sub-model independently produces real and synthetic logits. The ensemble averages
all real logits while keeping synthetic logits separate, creating an N + 1-dimensional output where N is the number of sub-models. (S.Hibbs 2025)

TABLE I
COMPUTATIONAL REQUIREMENTS FOR DIFFERENT RESNET

BACKBONES

Model Type Parameters (M) Layers Size (MB) GPU Memory (GB)
ResNet-18 11.7 18 44 < 2
ResNet-34 21.8 34 87 < 2
ResNet-50 25.6 50 102 < 3
ResNet-101 44.5 101 178 < 4
ResNet-152 60.2 152 240 < 5

Comparison of computational requirements for various ResNet architectures
that can be used as feature extraction backbones in the EUCLID system.
Deeper networks provide better feature extraction at the cost of increased

computational demands. (S.Hibbs 2025)

TABLE II
TRAINING PERFORMANCE WITH RESNET-152 ON VARIOUS GPU

CONFIGURATIONS

GPU Model Type Test Corpus Train Corpus Classes Time/Epoch (H)
Nvidia 3090 ResNet-152 28M 90M 2 18.5
Nvidia A100 × 1 ResNet-152 28M 90M 2 14.0
Nvidia A100 × 2 ResNet-152 28M 90M 2 10.0
Nvidia A100 × 4 ResNet-152 28M 90M 2 5.0

Empirical training performance metrics using the ResNet-152 backbone with
our standard dataset (90M training samples, 28M test samples) across

various GPU configurations. The nearly linear reduction in training time
demonstrates efficient parallel scaling of our implementation. (S.Hibbs 2025)

based on the available computational resources and
desired inference speed. For applications with limited
computational capacity, a ResNet-18 backbone provides
adequate performance while maintaining efficiency. Con-
versely, when prioritising detection accuracy for high-
stakes applications, the deeper ResNet-152 architecture
offers enhanced feature extraction capabilities at the
expense of increased computational requirements.

Table II presents empirical training performance met-

rics when using the ResNet-152 backbone on various GPU
configurations. The data illustrates the substantial train-
ing time reduction achieved through parallel computing.
With our dataset comprising 90 million training samples
and 28 million testing samples, a single Nvidia 3090 GPU
requires approximately 18.5 hours per training epoch.
The training time reduces nearly linearly with additional
computational resources, with four Nvidia A100 GPUs
completing an epoch in just 5 hours—a 73% reduction
compared to the 3090 baseline. These performance char-
acteristics demonstrate that our system can efficiently
process large-scale datasets when suitable computational
infrastructure is available. For production deployments,
we recommend multi-GPU training to minimise the time
required for model convergence, especially when using
deeper architectures like ResNet-152 that yield higher
accuracy at the cost of increased computational demands.

VI. CONCLUSION

This manuscript describes a sophisticated multi-head
binary classification architecture for synthetic data de-
tection, with particular application to artificially gen-
erated audio discrimination. The system integrates a
parameterised feature-extraction backbone with multiple
specialised classifier heads, whose probabilistic outputs
are aggregated asymmetrically by averaging all real
logits while preserving individual synthetic logits. This
ensemble methodology improves detection sensitivity
by enforcing a unanimity requirement for authentic
classification, thereby reducing the risk of misclassifying
synthetic content as authentic.

Our methodological contribution extends contempo-
rary research on ensemble learning, one-versus-all taxo-
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nomic frameworks, and synthetic data detection archi-
tectures. Empirical evidence suggests that such modular,
extensible designs can match or exceed the performance
of monolithic models, particularly in dynamic contexts
with continuously emerging synthetic techniques.

Uhmbrella Ltd. is currently applying these findings
in the development of EUCLID (Enhanced Utility for
Classification and Identification of Data), a comprehen-
sive software suite designed for audio attribution and
detection systems. EUCLID operationalises the multi-
head classification architecture described herein, with par-
ticular emphasis on its application to copyright protection
in generative AI ecosystems. One principal deployment
scenario is the detection of copyrighted audio material
within the tokenised outputs of generative audio AI
models, a critical functionality for intellectual property
protection in an era of increasingly sophisticated synthetic
content generation. The system’s modular architecture
and extensible classification strategy make it highly suit-
able for rapid adaptation to novel generative techniques.

Future research will investigate further optimisation of
parameter sharing among sub-models and the integration
of complementary modalities (such as visual artefacts) to
construct a comprehensive multimodal synthetic content
detection system.

FIGURE INDEX

• Figure (1): Architecture of the multi-head ensemble
model

• Figure (2): ResNet-18 architecture showing the resid-
ual connections that enable training of deep networks
[1]

TABLE INDEX

• Table (1): Computational Requirements for Different
ResNet Backbones

• Table (2): Training Performance with ResNet-152 on
Various GPU Configurations

EQUATION INDEX

• Equation (1): Sub-model output logits calculation
• Equation (2): Probability of real class from single

sub-model
• Equation (3): Probability of synthetic class from

single sub-model
• Equation (4): General softmax function for multi-

class problems
• Equation (5): Ensemble’s averaged real logit calcula-

tion
• Equation (6): Complete ensemble output vector

structure
• Equation (7): Ensemble’s probability estimation for

real class
• Equation (8): Ensemble’s probability estimation for

synthetic class
• Equation (9): Binary cross-entropy loss function

• Equation (10): General cross-entropy loss for multi-
class problems

• Equation (11): Decision rule for real vs. synthetic
classification

• Equation (12): Product of independent real probabil-
ities across sub-models

• Equation (13): Logarithmic transformation of proba-
bility product
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